Time structure of the average rotation measure for accretion disk in shearing box approximation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Temporal structure of the average rotation measure and the evolution of energetic characteristics of accretion disk in a shearing box approximation are considered. The temporal structure of rotation measure consists of both low- and high-frequency alternating sign oscillations. The mechanisms responsible for these oscillations and their connection with the disk dynamo are discussed. The 2D distributions and the vertical structure of rotation measure and magnetic energy are analysed for times corresponding to extrema and close to zero values of rotation measure. It is shown that the extrema of rotation measure are formed on account of several individual turbulent structures with large amplitudes that are related to magnetorotational and Parker instabilities. It is found that the spatial locations of these structures correspond to areas with high local magnetic energy. The possibility of estimating the period of disk dynamo using measurements of rotation measure is discussed. Cases of Sgr A* and M87* are considered.

Full Text

Restricted Access

About the authors

M. A. Buldakov

Astro Space Center, P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: buldakov@phystech.edu
Russian Federation, Moscow

A. S. Andrianov

Astro Space Center, P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: buldakov@phystech.edu
Russian Federation, Moscow

References

  1. N. I. Shakura and R. A. Sunyaev, Astron. and Astrophys. 24, 337 (1973).
  2. D. Lynden-Bell and J. E. Pringle, Monthly Not. Roy. Astron. Soc. 168, 603 (1974).
  3. S. A. Balbus and J. F. Hawley, Rev. Modern Physics 70(1), 1 (1998).
  4. M. C. Begelman, N. Scepi, and J. Dexter, Monthly Not. Roy. Astron. Soc. 511(2), 2040 (2022).
  5. B. R. Ryan, C. F. Gammie, S. Fromang, and P. Kestener, 840(1), id. 6 (2017).
  6. U. Das, M. C. Begelman, and G. Lesur, Monthly Not. Roy. Astron. Soc. 473(2), 2791 (2018).
  7. S. A. Balbus and J. F. Hawley, 376, 214 (1991).
  8. J. F. Hawley and S. A. Balbus, 376, 223 (1991).
  9. E. P. Velikhov, JETP 9, 995 (1959).
  10. S. Chandrasekhar, Proc. Nat. Acad. Sci. USA 46(2), 253 (1960).
  11. J. C. McKinney, A. Tchekhovskoy, and R. D. Blandford, Monthly Not. Roy. Astron. Soc. 423(4), 3083 (2012).
  12. M. D. Marshall, M. J. Avara, and J. C. McKinney, Monthly Not. Roy. Astron. Soc. 478(2), 1837 (2018).
  13. R. Wielebinski, J. Astron. History and Heritage 15(2), 76 (2012).
  14. C. Y. Kuo, K. Asada, R. Rao, M. Nakamura, et al., Astrophys. J. Letters 783(2), id. L33 (2014).
  15. Y.-P. Li, F. Yuan, and F.-G. Xie, 830(2), id. 78 (2016).
  16. A. Ricarte, B. S. Prather, G. N. Wong, R. Narayan, C. Gammie, and M. D. Johnson, Monthly Not. Roy. Astron. Soc. 498(4), 5468 (2020).
  17. F. Govoni, K. Dolag, M. Murgia, L. Feretti, et al., Astron. and Astrophys. 522, id. A105 (2010).
  18. G. B. Taylor, J. Ge, and C. P. O’Dea, Astron. J. 110, 522 (1995).
  19. J. L. Han, R. N. Manchester, W. van Straten, and P. Demorest, Astrophys. J. Suppl. 234(1), id. 11 (2018).
  20. J. M. Weisberg, J. M. Cordes, B. Kuan, K. E. Devine, J. T. Green, and D. C. Backer, Astrophys. J. Suppl. 150(1), 317 (2004).
  21. C. L. Van Eck, J. C. Brown, A. Ordog, R. Kothes, et al., Astrophys. J. Suppl. 253(2), id. 48 (2021).
  22. N. C. Raycheva, M. Haverkorn, S. Ideguchi, J. M. Stil, et al., Astron. and Astrophys. 663, id. A170 (2022) .
  23. R. T. Zavala and G. B. Taylor, 566(1), L9 (2002).
  24. J. Park, K. Hada, M. Kino, M. Nakamura, H. Ro, and S. Trippe, 871(2), id. 257 (2019).
  25. F. Yuan, H. Wang, and H. Yang, 924(2), id. 124 (2022).
  26. R. D. Nan, H. Y. Zhang, D. C. Gabuzda, J. S. Ping, R. T. Schilizzi, W. W. Tian, and M. Inoue, Astron. and Astrophys. 357, 891 (2000).
  27. G. C. Bower, M. C. H. Wright, H. Falcke, and D. C. Backer, 588(1), 331 (2003).
  28. D. P. Marrone, J. M. Moran, J.-H. Zhao, and R. Rao, 654(1), L57 (2007).
  29. J.-Y. Kim, T. P. Krichbaum, A. P. Marscher, S. G. Jorstad, et al., Astron. and Astrophys. 622, id. A196 (2019).
  30. R. L. Plambeck, G. C. Bower, R. Rao, D. P. Marrone, et al., 797(1), id. 66 (2014).
  31. M. Wielgus, S. Issaoun, I. Marti-Vidal, R. Emami, M. Moscibrodzka, C. D. Brinkerink, C. Goddi, and E. Fomalont, Astron. and Astrophys. 682, id. A97 (2024).
  32. M. Villenave, F. Ménard, W. R. F. Dent, G. Duchêne, et al., Astron. and Astrophys. 642, id. A164 (2020).
  33. J. Hashimoto, T. Muto, R. Dong, Y. Hasegawa, N. van der Marel, M. Tamura, M. Takami, and M. Momose, 908(2), id. 250 (2021).
  34. F. Louvet, C. Dougados, S. Cabrit, A. Hales, et al., Astron. and Astrophys. 596, id. A88 (2016).
  35. T.-H. Hsieh, N. Hirano, A. Belloche, C.-F. Lee, Y. Aso, and S.-P. Lai, 871(1), id. 100 (2019).
  36. S. Richling and H. W. Yorke, 539(1), 258 (2000).
  37. A.A. Boyarchuk, B. M. Shustov, I. S. Savanov, M. E. Sachkov, et al., Astron. Rep. 60(1), 1 (2016).
  38. Y. Io and T. K. Suzuki, 780(1), id. 46 (2014).
  39. C. J. Bambic, E. Quataert, and M. W. Kunz, Monthly Not. Roy. Astron. Soc. 527(2), 2895 (2024).
  40. T. K. Suzuki, M. Ogihara, A. Morbidelli, A. Crida, and T. Guillot, Astron. and Astrophys. 596, id. A74 (2016).
  41. P. C. Tribble, Monthly Not. Roy. Astron. Soc. 250, 726 (1991).
  42. J. A. Eilek, Astron. J. 98, 244 (1989).
  43. J. A. Eilek, Astron. J. 98, 256 (1989).
  44. M. S. Nakwacki, G. Kowal, R. Santos-Lima, E. M. de Gouveia Dal Pino, and D. A. Falceta-Gonçalves, Monthly Not. Roy. Astron. Soc. 455(4), 3702 (2016).
  45. R. Santos-Lima, E. M. de Gouveia Dal Pino, D. A. Falceta-Gonçalves, M. S. Nakwacki, and G. Kowal, Monthly Not. Roy. Astron. Soc. 465(4), 4866 (2017).
  46. A.Y. L. On, J. Y. H. Chan, K. Wu, C. J. Saxton, and L. van Driel-Gesztelyi, Monthly Not. Roy. Astron. Soc. 490(2), 1697 (2019).
  47. H. N. Latter, S. Fromang, and O. Gressel, Monthly Not. Roy. Astron. Soc. 406(2), 848 (2010).
  48. J. F. Hawley, S. A. Richers, X. Guan, and J. H. Krolik, 772(2), id. 102 (2013).
  49. G. Lesur and P.-Y. Longaretti, Astron. And Astrophys. 504(2), 309 (2009).
  50. K. Hirai, Y. Katoh, N. Terada, and S. Kawai, 853(2), id. 174 (2018).
  51. A.Riols, F. Rincon, C. Cossu, G. Lesur, G. I. Ogilvie, and P.-Y. Longaretti, Astron. and Astrophys. 598, id. A87 (2017).
  52. J. D. Hogg and C. S. Reynolds, 861(1), id. 24 (2018).
  53. P. Dhang and P. Sharma, Monthly Not. Roy. Astron. Soc. 482(1), 848 (2019).
  54. J. F. Hawley, C. F. Gammie, and S. A. Balbus, 440, 742 (1995).
  55. G. Bodo, F. Cattaneo, A. Mignone, and P. Rossi, Astrophys. J. Letters 787(1), id. L13 (2014).
  56. A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, and A. Ferrari, Astrophys. J. Suppl. 170(1), 228 (2007).
  57. L. E. Held and G. Mamatsashvili, Monthly Not. Roy. Astron. Soc. 517(2), 2309 (2022).
  58. G. Bodo, F. Cattaneo, A. Mignone, and P. Rossi, 761(2), id. 116 (2012).
  59. A. S. Hales, S. Pérez, C. Gonzalez-Ruilova, L. A. Cieza, et al., 900(1), id. 7 (2020).
  60. F. Bacchini, L. Arzamasskiy, V. Zhdankin, G. R. Werner, M. C. Begelman, and D. A. Uzdensky, 938(1), id. 86 (2022) .
  61. Y.-F. Jiang, S. W. Davis, and J. M. Stone, 827(1), id. 10 (2016).
  62. Y.-X. Chen, Y.-F. Jiang, J. Goodman, and E. C. Ostriker, 948(2), id. 120 (2023).
  63. F. Pucci, K. Tomida, J. Stone, S. Takasao, H. Ji, and S. Okamura, 907(1), id. 13 (2021) .
  64. R. Yellin-Bergovoy, O. M. Umurhan, and E. Heifetz, Geophys. and Astrophys. Fluid Dyn. 115(5-6), 674 (2021).
  65. J. B. Simon, G. Lesur, M. W. Kunz, and P. J. Armitage, Monthly Not. Roy. Astron. Soc. 454(1), 1117 (2015) .
  66. K. A. Sorathia, C. S. Reynolds, J. M. Stone, and K. Beckwith, 749(2), id. 189 (2012) .
  67. D. W. Pesce, D. C. M. Palumbo, R. Narayan, L. Blackburn, et al., 923(2), id. 260 (2021) .
  68. K. I. Öberg, V. V. Guzmán, C. Walsh, Y. Aikawa, et al., Astrophys. J. Suppl. 257(1), id. 1 (2021).
  69. T. Tsukagoshi, H. Nomura, T. Muto, R. Kawabe, et al., 928(1), id. 49 (2022) .
  70. M. Ansdell, J. P. Williams, L. Trapman, S. E. van Terwisga, et al., 859(1), id. 21 (2018) .
  71. X.-N. Bai and J. M. Stone, 767(1), id. 30 (2013) .
  72. J. M. Stone, J. F. Hawley, C. F. Gammie, and S. A. Balbus, 463, 656 (1996).
  73. K. Sai, Y. Katoh, N. Terada, and T. Ono, 767(2), id. 165 (2013).
  74. M. C. Begelman and J. E. Pringle, Monthly Not. Roy. Astron. Soc. 375(3), 1070 (2007).
  75. K. A. Miller and J. M. Stone, 534(1), 398 (2000) .
  76. O. Gressel, Monthly Not. Roy. Astron. Soc. 405(1), 41 (2010) .
  77. O. Gressel and M. E. Pessah, 810(1), id. 59 (2015) .
  78. M. Flock, N. Dzyurkevich, H. Klahr, N. J. Turner, and Th. Henning, 735(2), id. 122 (2011) .
  79. T. K. Suzuki and S. Inutsuka, Astrophys. J. Letters 691(1), L49 (2009).
  80. J. Walker and S. Boldyrev, Monthly Not. Roy. Astron. Soc. 470(3), 2653 (2017).
  81. P. Bhat, F. Ebrahimi, and E. G. Blackman, Monthly Not. Roy. Astron. Soc. 462(1), 818 (2016).
  82. A. E. Dudorov and S. A. Khaibrakhmanov, Astron. Astrophys. Trans. 29(4), 429 (2016) .
  83. L. H. S. Kadowaki, E. M. De Gouveia Dal Pino, and J. M. Stone, 864(1), id. 52 (2018) .
  84. J. R. Najita and E. A. Bergin, 864(2), id. 168 (2018) .
  85. F. Nauman and E. G. Blackman, Monthly Not. Roy. Astron. Soc. 446(2), 2102 (2015).
  86. M. D. Johnson, K. Akiyama, L. Blackburn, K. L. Bouman, et al., Galaxies 11(3), 61 (2023).
  87. V. L. Fish, M. Shea, and K. Akiyama, Adv. Space Research 65(2), 821 (2020).
  88. S. Doeleman, L. Blackburn, J. Dexter, J. L. Gomez, et al., Bull. Amer. Astron. Soc. 51(7), id. 256 (2019) .
  89. A. Chael, M. D. Johnson, and A. Lupsasca, 918(1), id. 6 (2021).
  90. M. A. Brentjens and A. G. de Bruyn, Astron. and Astrophys. 441(3), 1217 (2005).
  91. G. Heald, in Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, Proc. of the IAU, edited by K. G. Strassmeier, A. G. Kosovichev, J. E. Beckman, IAU Symposium 259, 591 (2009).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evolution of the volume-averaged magnetic energy 〈Emag〉 (upper graph), α-parameter (central graph) and RM (lower graph) for the SB3 (black lines) and SB2 (gray lines) models.

Download (260KB)
3. Fig. 2. Dependence on the height and time of the horizontally averaged component of the magnetic field for the SB3 model.

Download (252KB)
4. Fig. 3. 2D distributions of RMXY (top row) and magnetic energy (bottom row) in the (X,Y) plane for three time points corresponding to the RM maximum (left), RM minimum (center) and RM close to zero (right) for the SB3 model.

Download (208KB)
5. Fig. 4. Histograms of 2D RMXY distributions for three time points corresponding to the RM maximum (dark gray lines), RM minimum (light gray lines) and RM value close to zero (black lines) for the SB3 (left) and SB2 (right) models.

Download (112KB)
6. Fig. 5. Histograms of 2D magnetic energy distributions for three time points corresponding to the RM maximum (dark gray lines), RM minimum (light gray lines) and RM value close to zero (black lines) for the SB3 (left) and SB2 (right) models.

Download (107KB)
7. Fig. 6. Dependence on the height and time of the horizontally averaged density (left) and evolution at three fixed values of the height z (right): z = 0.5H (black line), z = 1H (dark gray line), z = 2H (light gray line) for the SB3 model.

Download (132KB)
8. Fig. 7. 2D density distributions in the (Y, Z) plane for time t = 80T for models SB3 (left) and SB2 (right).

Download (175KB)
9. Fig. 8. Dependences on the altitude and time of the quantities (left) and (right) for the SB3 model.

Download (172KB)
10. Fig. 9. Vertical profiles of horizontally averaged values (black lines) and (gray lines) for three time points corresponding to a) maximum RM, b) minimum RM and c) close to zero RM for the SB3 model.

Download (224KB)

Copyright (c) 2024 The Russian Academy of Sciences