Displacement norm in the presence of an inverse-square perturbing acceleration in the reference frame associated with the radius vector

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of motion of a zero-mass point under the influence of attraction to the central body and a small perturbing acceleration P′ = P/r 2 is considered, where r is the distance to the attracting center, components of the vector P are assumed to be constant in a reference system with axes directed along the radius vector, the transversal and the angular momentum vector. Previously, for this problem, we found equations of motion in the mean elements and formulas for the transition from the osculating elements to the mean elements in the first order of smallness; we neglected second-order quantities. In this work, the Euclidean (root–mean–square over the mean anomaly) displacement norm ||dr||2 is obtained, where dr represents the difference between the position vectors on the osculating and mean orbit. It turned out that ||dr||2 depends only on the components of the vector P (positive definite quadratic form), the semi–major axis (proportional to the second power) and the eccentricity of the osculating ellipse. The norm ||dr||2 is obtained in the form of series in powers of the β=e/1+1-e2 and in powers of the eccentricity e. The results are applied to the problem of the motion of asteroids under the influence of a perturbing acceleration inversely proportional to the square of the heliocentric distance, in particular, under the influence of the Yarkovsky effect.

Texto integral

Acesso é fechado

Sobre autores

T. Sannikova

Crimean Astrophysical Observatory of RAS

Autor responsável pela correspondência
Email: tnsannikova@craocrimea.ru
Rússia, Nauchny, Crimea

Bibliografia

  1. Т.Н. Санникова, К.В. Холшевников, Астрон. журн. 96(5), 418 (2019).
  2. Н. Батмунх, Т.Н. Санникова, К.В. Холшевников, В.Ш. Шайдулин, Астрон. журн. 93(3), 331 (2016).
  3. И.С. Градштейн, И.М. Рыжик, Таблицы интегралов, рядов и произведений (СПб.: БХВ-Петербург, 2011).
  4. Small-Body Database Lookup, Jet Propulsion Laboratory NASA, California Institute of Technology, https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/.
  5. Т.Н. Санникова, Астрон. журн. 98(4), 321 (2021).
  6. D. Vokrouhlický, Astron. and Astrophys. 344, 362 (1999).
  7. J. Ďurech, D. Vokrouhlický, P. Pravec, J. Hanuš, et al., Astron. and Astrophys. 609, id. A86 (2018).
  8. Т.Н. Санникова, Астрон. журн. 99(6), 506 (2022).
  9. К.В. Холшевников, В. Б. Титов, Задача двух тел. Учеб. пособие (СПб.: изд. СПбГУ, 2007).
  10. Г.М. Фихтенгольц, Курс дифференциального и интегрального исчисления. Т. 2 (М.: Физматлит, 2001).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Supplementary
Baixar (0B)
3. Fig. 1. Values of V1, V2, V3 as a function of eccentricity e on the interval from 0 to 1. The lower graphs represent V2 at different scales, the right side shows the values of V2 up to e = 0.9. The points of maxima (blue squares) and points of minima (red circles) are marked on the graphs

Baixar (194KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024