On Asymptotically Optimal Approach for Finding of the Minimum Total Weight of Edge-Disjoint Spanning Trees with a Given Diameter
- 作者: Gimadi E.K.1, Shtepa A.A.2
- 
							隶属关系: 
							- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
 
- 期: 编号 7 (2023)
- 页面: 146-166
- 栏目: Optimization, system analysis, and operations research
- URL: https://cardiosomatics.ru/0005-2310/article/view/646757
- DOI: https://doi.org/10.31857/S0005231023070085
- EDN: https://elibrary.ru/FDWYOE
- ID: 646757
如何引用文章
详细
We consider the intractable problem of finding several edge-disjoint spanning trees of the minimum total weight with a given diameter in complete undirected graph in current paper. The weights of edges of a graph are random variables from several continuous distributions: uniform, biased truncated exponential, biased truncated normal. The approximation algorithm with time complexity O(n2), where n is number of vertices in graph, is proposed for solving this problem. The asymptotic optimality conditions for constructed algorithm is presented for each considered probabilistic distribution.
作者简介
E. Gimadi
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
														Email: gimadi@math.nsc.ru
				                					                																			                												                								Novosibirsk, Russia						
A. Shtepa
Novosibirsk State University
							编辑信件的主要联系方式.
							Email: shoomath@gmail.com
				                					                																			                												                								Novosibirsk, Russia						
参考
- Frieze A. On the Value of a Random MST Problem // Discrete Applied Mathematics. 1985. V. 10. P. 47-56. https://doi.org/10.1016/0166-218X(85)90058-7
- Angel O., Flaxman A.D., Wilson D.B. A Sharp Threshold for Minimum Bounded-Depth and Bounded-Diameter Spanning Trees and Steiner Trees in Random Networks // Combinatorica. 2012. V. 32. P. 1-33. https://doi.org/10.1007/s00493-012-2552-z
- Cooper C., Frieze A., Ince N., Janson S., Spencer J. On the Length of a Random Minimum Spanning Tree // Combinatorics, Probability and Computing. 2016. V. 25. No. 1. P. 89-107. https://doi.org/10.1017/S0963548315000024
- Garey M.R., Johnson D.S. Computers and Intractability. 1979. Freeman, San Francisco. 340 p.
- Clementi A.E.F., Ianni M.D., Monti A., Rossi, G., Silvestri R. Experimental Analysis of Practically E cient Algorithms for Bounded-Hop Accumulation in Ad-Hoc Wireless Networks // Proc. 19th IEEE Int. Parallel Distributed Processing Symposium (IPDPS'05). 2005. P. 8-16. https://doi.org/10.1109/IPDPS.2005.210
- Bala K., Petropoulos K., Stern T.E. Multicasting in a Linear Lightwave Network // Proc. of IEEE INFOCOM'93. 1993. P. 1350-1358. https://doi.org/10.1109/INFCOM.1993.253399
- Bookstein A., Klein S.T. Compression of Correlated Bit-Vectors // Inform. Syst. 1996. V. 16. No. 4. P. 110-118.
- Raymond K. A Tree-Based Algorithm for Distributed Mutual Exclusion // ACM Trans. on Comput. Syst. 1989. V. 7. No. 1. P. 61-77. https://doi.org/10.1145/58564.59295
- Gruber M. Exact and Heuristic Approaches for Solving the Bounded Diameter Minimum Spanning Tree Problem. Vienna University of Technology. PhD Thesis. 2009.
- Gimadi E.Kh., Serdyukov A.I. A Probabilistic Analysis of Approximation Algorithm for the Minimum Weight Spanning Tree Problem with a Bounded Below Diameter / Oper. Res. Proceed. V. 99. In: K. Inderfurth et. al. (eds.). Springer, Berlin. 2000. P. 63-68. https://doi.org/10.1007/978-3-642-58300-1_12
- Gimadi E.Kh., Istomin A.M., Shin E.Yu. On Algorithm for the Minimum Spanning Tree Problem Bounded Below // Proc. conference DOOR 2016. Vladivostok. Russia. CEUR-WS. V. 1623. 2016. P. 11-17.
- Gimadi E.Kh., Shin E.Yu. On Given Diameter MST Problem on Random Input Data / In: I. Bykadorov, V. Strusevich, T. Tchemisova (eds.). MOTOR 2019. Communications in Computer and Information Science. V. 1090. Springer, Cham. 2019. P. 30-38. https://doi.org/10.1007/978-3-030-33394-2_3
- Gimadi E.Kh., Shevyakov A.S., Shtepa A.A. A Given Diameter MST on a Random Graph / In: N. Olenev, Y. Evtushenko, M. Khachay, V. Malkova (eds.). Optimization and Applications - 11th International Conference OPTIMA. 2020. LNCS. V. 12422. P. 110-121. https://doi.org/10.1007/978-3-030-62867-3_9
- Гимади Э.Х., Глебов Н.И., Перепелица В.А. Алгоритмы с оценками для задач дискретной оптимизации // Проблемы кибернетики. 1975. Вып. 31. С. 35-42.
- Petrov V.V. Limit Theorems of Probability Theory. Sequences of Independent Random Variables. 1995. Clarendon Press. Oxford. 304 p.
- Гимади Э.Х., Глазков Ю.В. Об асимптотически точном алгоритме решения одной модификации трехиндексной планарной задачи о назначениях // Дискретный анализ и исследование операций. 2006. Сер. 2. Т. 13. № 1. С. 10-26.
- Гимади Э.Х., Хачай М.Ю. Экстремальные задачи на множествах перестановок. Екатеринбург: Изд-во УМЦ УПИ, 2016. 219 c.
- Гимади Э.Х., Шин Е.Ю. Вероятностный анализ алгоритма нахождения в графе минимального остовного дерева с ограниченным снизу диаметром // Дискретный анализ и исследование операций. 2015. Т. 22. № 4. С. 5-20. https://doi.org/10.17377/daio.2015.22.474
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					