Effect of deformation on the diffusion properties of β-Zr at high temperatures
- 作者: Konov D.A.1, Sidnov K.P.1, Sinyakov R.I.1, Belov M.P.1
-
隶属关系:
- National University of Science and Technology MISiS
- 期: 卷 125, 编号 8 (2024)
- 页面: 964-973
- 栏目: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://cardiosomatics.ru/0015-3230/article/view/682660
- DOI: https://doi.org/10.31857/S0015323024080069
- EDN: https://elibrary.ru/JWNZLK
- ID: 682660
如何引用文章
详细
The method of classical molecular dynamics with application of moment tensor potential of interatomic interaction were used to study diffusion properties of pure bcc β-Zr in the temperature range 1800–2100 K. The used potential was pre-trained on the data of ab initio calculations and verified by comparing the calculation results with the available experimental and theoretical data. The constructed potential reproduces the temperature phase transition from hcp α-Zr to bcc β-Zr, the experimental values of the thermal expansion coefficient and the diffusion coefficient, as well as the ab initio calculated equations of state of both phases at low temperatures. The dependence of the self-diffusion coefficient in zirconium is obtained in dependence on the strain in the range from –3 to 3%. It is shown that melting of the distorted structure can occur at a temperature below the melting temperature of the undeformed crystal.
作者简介
D. Konov
National University of Science and Technology MISiS
编辑信件的主要联系方式.
Email: dkonov@misis.ru
俄罗斯联邦, Moscow, 119049
K. Sidnov
National University of Science and Technology MISiS
Email: dkonov@misis.ru
俄罗斯联邦, Moscow, 119049
R. Sinyakov
National University of Science and Technology MISiS
Email: dkonov@misis.ru
俄罗斯联邦, Moscow, 119049
M. Belov
National University of Science and Technology MISiS
Email: dkonov@misis.ru
俄罗斯联邦, Moscow, 119049
参考
- Yu X., Zhang N. Molecular dynamics modelling of the stress effect on diffusion behavior of hydrogen in tungsten // Fusion Eng. Des. 2024. V. 200. P. 114180.
- Mohammadzadeh R., Razmara N., Razmara F. Molecular dynamics study of strain-induced diffusivity of nitrogen in pure iron nanocrystalline // Physica A: Stat. Mech. Appl. 2016. V. 463. P. 123–130.
- Clerici D., Mocera F., Somà A. Analytical Solution for Coupled Diffusion Induced Stress Model for Lithium-Ion Battery // Energies. 2020. V. 13. № 7. P. 1717.
- Willenberg L.K., Dechent P., Fuchs G., Sauer D.U., Figgemeier E. High-Precision Monitoring of Volume Change of Commercial Lithium-Ion Batteries by Using Strain Gauges // Sustain. Sci. Pract. Policy. 2020. V. 12. № 2. P. 557.
- Qi Z., Shan Z., Ma W., Li L., Wang S., Li C., Wang Z. Strain Analysis on Electrochemical Failures of Nanoscale Silicon Electrode Based on Three-Dimensional In Situ Measurement // NATO Adv. Sci. Inst. Ser. E Appl. Sci. 2020. V. 10. № 2. P. 468.
- Cheng X., Pecht M. In Situ Stress Measurement Techniques on Li-ion Battery Electrodes: A Review // Energies. 2017. V. 10. № 5. P. 591.
- Cushman J.H. Nonlocal diffusion and strain-induced liquification of particulate media // Mech. Mater. 1993. V. 16. № 1–2. P. 119–124.
- Zhang Y., Jiang C., Bai X. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations // Sci. Rep. 2017. V. 7. № 1. P. 1–13.
- Kidson G., McGurn J. Self-diffusion in body-centered cubic zirconium // Canadian J. Phys. 1961. V. 39. № 8. P. 1146–1157.
- Urazaliev M.G., Stupak M.E., Popov V.V. Atomistic Simulation of Self-Diffusion and Diffusion of Со along Symmetric Tilt Grain Boundaries [2-1-10] in α-Ti // Phys. Met. Metall. 2023. V. 124. № 9. P. 923–933.
- Popov V.V., Stupak M.E., Urazaliev M.G. Atomistic Simulation of Grain Boundaries in Niobium: Structure, Energy, Point Defects and Grain-Boundary Self-Diffusion // J. Phase Equilib. Diffus. 2022. V. 43. № 4. P. 401–408.
- Демидов Д.Н., Сивак А.Б., Сивак П.А. Диффузионные характеристики кластеров собственных междоузельных атомов в ванадии: молекулярно-динамические данные // ФММ. 2023. Т. 124. № 5. С. 400–408.
- Демидов Д.Н., Сивак А.Б., Сивак П.А. Диффузия димежузлий в ОЦК-металлах Fe и V, подверженных внешним нагрузкам разных типов // ФММ. 2021. Т. 122. № 11. С. 1164–1170.
- Страумал Б.Б., Заворотнев Ю.Д., Метлов Л.С., Страумал П.Б., Петренко А.Г., Томашевская Е.Ю. Фазовые превращения, вызванные кручением под высоким давлением // ФММ. 2022. Т. 123. № 12. С. 1283–1288.
- Biesiekierski A., Wang J., Gerpeel M.A-H., Wen C. A new look at biomedical Ti-based shape memory alloys // Acta Biomater. 2012. V. 8. № 5. P. 1661–1669.
- Yau T.-L., Annamalai V.E. Corrosion of Zirconium and its Alloys. 2016.
- Krishnan R., Asundi M.K. Zirconium alloys in nuclear technology // Proceed. Indian Academy Sci. Section C: Eng. Sci. 1981. V. 4. № 1. P. 41–56.
- Jaworska L., Cyboron J., Cygan S., Zwolinski A., Onderka B., Skrzekut T. Zirconium Phase Transformation under Static High Pressure and ω-Zr Phase Stability at High Temperatures // Materials. 2019. V. 12. № 14. P. 2244.
- Раков Э. Химическая энциклопедия в 5 т. 1998. Т. 5: Триптофан – Ятрохимия. С. 384.
- Eisenbarth E., Velten D., Muller M., Thull R., Breme J. Biocompatibility of beta-stabilizing elements of titanium alloys // Biomaterials. 2004. V. 25. № 26. P. 5705–5713.
- Smirnova E.A., Ponomareva A.V., Konov D.A., Belov M.P. A Systematic First-Principles Description of the Thermodynamic, Elastic, and Mechanical Properties of Zr-Based Binary BCC Alloys // Phys. Met. Metall. 2023. V. 124. № 6. P. 583–599.
- Dobromyslov A.V. Effect of d Metals on the Polymorphous and (Mono) Eutectoid Transformation Temperatures of Binary Titanium, Zirconium, and Hafnium Alloys // Phys. Met. Metall. 2020. V. 121. № 5. P. 466–470.
- Li Y., Cui Y., Zhang F., Xu H. Shape memory behavior in Ti–Zr alloys // Scr. Mater. 2011. V. 64. № 6. P. 584–587.
- Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals // Phys. Rev. B Condens. Matter. 1993. V. 47. № 1. P. 558.
- Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects // Phys. Rev. 1965. V. 140. № 4A. P. A1133.
- Novikov I.S., Gubaev K., Podryabinkin E.V., Shapeev A.V. The MLIP package: moment tensor potentials with MPI and active learning // Mach. Learn. Sci. Technol. 2021. V. 2. № 2. P. 025002.
- Shapeev A.V. Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials // Multiscale Model. Simul. 2016.
- Thompson A.P., Aktulga H.M., Berger R., Bolintineanu D.S., Brown W.M., Crozier P.S., in’t Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales // Comput. Phys. Commun. 2022. V. 271. P. 108171.
- Blöchl P.E. Projector augmented-wave method // Phys. Rev. B Condens. Matter. 1994. V. 50. № 24. P. 17953.
- Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B Condens. Matter. 1996. V. 54. № 16. P. 11169.
- Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set // Comput. Mater. Sci. 1996. V. 6. № 1. P. 15–50.
- Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method // Phys. Rev. B Condens. Matter. 1999. V. 59. № 3. P. 1758.
- Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865.
- Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen // Ann. Phys. 1905. V. 322. № 8. P. 549–560.
- Белов М.П., Синяков Р.И. Динамика решетки и нелинейный отклик ОЦК-титана на деформации при высокой температуре в методе ab initio молекулярной динамики // ФТТ. 2022. Т. 64. № 8. С. 915.
- Smirnova D.E., Starikov S.V., Gordeev I.S. Evaluation of the structure and properties for the high-temperature phase of zirconium from the atomistic simulations // Comput. Mater. Sci. 2018. V. 152. P. 51–59.
- Liu P., Verdi C., Karsai F., Kresse G. α−β phase transition of zirconium predicted by on-the-fly machine-learned force field // Phys. Rev. Mater. 2021. V. 5. № 5. P. 053804.
- Zong H., Pilania G., Ding X., Ackland G.J., Lookman T. Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning // npj Comput. Mater. 2018. V. 4. № 1. P. 1–8.
- Skinner G.B., Johnston H.L. Thermal Expansion of Zirconium between 298°K and 1600°K // J. Chem. Phys. 1953. V. 21. № 8. P. 1383–1384.
- Mendelev M.I., Ackland G.J. Development of an interatomic potential for the simulation of phase transformations in zirconium // Philos. Mag. Lett. 2007. V. 87. № 5. P. 349–359.
补充文件
