The effect of nitriding temperature on the formation of surface layers of vanadium-titanium alloy Ti–6Al–4V

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, using the methods of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD), the features of the formation of surface morphology, chemical and phase composition of near-surface and surface layers during ion-plasma processing of the Ti–6Al–4V (VT6) alloy in a glow discharge plasma of N+ ions were studied. depending on the temperature of the samples. It has been shown that increasing the sample temperature from 300 to 700°С during processing leads to an increase in the surface roughness parameters Ra and Rz, due to the formation of titanium nitrides Ti2N and TiN on the surface of the alloy. Based on the conducted research, it is assumed that the formation of thin near-surface layers (~20 nm) during treatment in nitrogen plasma without heating and with heating to 300°С is determined by the oxidation processes of alloy components, and when processing with heating to 500 and 700°С by nitrogen diffusion processes.

Texto integral

Acesso é fechado

Sobre autores

V. Vorobyev

Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

V. Gladysheva

Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

S. Bystrov

Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

P. Bykov

Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

V. Bayankin

Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

A. Ulyanov

Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

Bibliografia

  1. Bai H., Zhong L., Kang L., Liu J., Zhuang W., Lv Z., Xu Y. A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy // J. Alloys Compounds. 2021. V. 882. P. 160645.
  2. Liu X., Chu P., Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications // Mater. Sci. Eng.: R: Reports. 2004. V. 47. P. 49–121.
  3. Li Y., Wang Z., Shao M., Zhang Z., Wang C., Yan J., Lu J., Zhang L., Xie B., He Y., Qiu J.X. Characterization and electrochemical behavior of a multilayer-structured Ti–N layer produced by plasma nitriding of electron beam melting TC4 alloy in Hank's solution // Vacuum. 2022. V. 208. P. 111737.
  4. Jiang X.J., Wang S.Z., Feng Z.H., Qi H.B., Fu H., Liu R.P. Improving vacuum gas nitriding of a Ti-based alloy via surface solid phase transformation // Vacuum. 2022. V. 197. P. 110860.
  5. Ахмадеев Ю.Х., Иванов Ю.Ф., Коваль Н.Н., Лопатин И.В., Щанин П.М. Азотирование титана ВТ1-0 в несамостоятельном тлеющем разряде низкого давления в различных газовых средах // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2008. № 2. С. 108–112.
  6. Поболь И.Л., Олешук И.Г., Дробов А.Н., Фун С., Лиин В. Исследование формирования упрочненных слоев на титановых сплавах методом ионноплазменного азотирования // Вестник Национальной академии наук Белоруссии. Серия физико-технических наук. 2019. Т. 64. № 1. С. 25–34.
  7. Zhevtun I.G., Gordienko P.S., Yarusova S.B., Silant’ev V.E., Yudakov A.A. Producing a microporous structure on titanium alloys by means of plasma surface treatment // Protection Metals Phys. Chem. Surfaces. 2017. V. 53. P. 100–104.
  8. Tyunkov A.V., Golosov D.A., Zolotukhin D.B., Nikonenko A.V., Oks E.M., Yushkov Yu.G., Yakovlev E.V. Nitriding of titanium in electron beam excited plasma in medium vacuum // Surface Coatings Techn. 2020. V. 383. P. 125241.
  9. Ахмадеев Ю.Х., Гончаренко И.М., Иванов Ю.Ф., Коваль Н.Н., Щанин П.М. Азотирование технически чистого титана в тлеющем разряде с полым катодом // Письма в ЖТФ. 2005. Т. 31. № 13. С. 24–30.
  10. Vlcak P., Sepitka J., Drahokoupil J., Tomas Horazdovsky T., Tolde Z. Structural characterization and mechanical properties of a titanium nitride-based nanolayer prepared by nitrogen ion implantation on a titanium alloy // J. Nanomaterials. 2016. V. 5. P. 1–7.
  11. Vorobyev V.L., Bykov P.V., Bystrov S.G., Kolotov A.A., Bayankin V.Ya. The effect of the chemical activity of the implanted element to metal alloy components on the formation of surface layers under ion irradiation // Diagnostics, Resource Mechanics Mater. Structures. 2023. V. 3. P. 29–43.
  12. Александров Д.А., Мубояджян С.А., Луценко А.Н., Журавлева П.Л. Упрочнение поверхности титановых сплавов методом ионной имплантации и ионного модифицирования // Авиационные материалы и технологии. 2018. T. 2. C. 33–39.
  13. Шелехов E.В., Свиридова Т.А. Программы для рентгеновского анализа поликристаллов // Металловедение и термическая обработка металлов. 2000. № 8. C. 16–19.
  14. Поплавский В.В., Поболь И.Л., Дробов А.Н. Исследование процессов фазообразования при ионно-плазменном азотировании сплавов титана / Тезисы докладов 15-ой Международной конференции “Взаимодействие излучений с твердым телом”, Минск, Беларусь. 2023. C. 102–104.
  15. Дробов А.Н., Босяков М.Н., Поболь И.Л. Влияние ионно-плазменного азотирования на износостойкость и характер изменения шероховатости поверхности титановых сплавов ВТ1-0, ВТ6 и ОТ4-1 // Литье и металлургия. 2022. № 2. С. 78–83.
  16. Болгар А.С., Литвиенко В.Ф. Термодинамические свойства нитридов. Киев: Наукова Думка, 1980. С. 282.
  17. Воробьев В.Л., Быков П.В., Колотов А.А., Гильмутдинов Ф.З., Аверкиев И.К., Баянкин В.Я. Особенности формирования поверхностных слоев нержавеющей стали и титанового сплава имплантацией ионов N+ // ФММ. 2021. Т. 122. № 12. С. 1302–1308.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. AFM images of the surface morphology of the studied samples: (a) – original sample; (b) – N+ plasma with heating of samples to 300°C; (c) – N+ plasma with heating of samples to 500°C; (d) – N+ plasma with heating of samples to 700°C.

Baixar (604KB)
3. Fig. 2. Distribution profiles of elements in samples of titanium alloy VT6 in the initial state (a) and after treatment in nitrogen plasma without heating (b).

Baixar (68KB)
4. Fig. 3. Distribution profiles of elements in titanium alloy VT6 after treatment in N+ ion plasma with heating of samples to 300°C (a); 500°C (b); 700°C (c).

Baixar (111KB)
5. Fig. 4. Distribution profiles of nitrogen (a) and oxygen (b) in VT6 samples treated in N+ ion plasma under different conditions: initial sample (1), N+ ion plasma without heating the samples (2) and with heating to temperatures of 300°C (3); 500°C (4); 700°C (5).

Baixar (71KB)
6. Fig. 5. O1s XPS spectrum obtained from a depth of ~20 nm in sample BT6 after plasma treatment without heating (a); with heating at 300°C (b); 500°C (c); 700°C (d).

Baixar (96KB)
7. Fig. 6. N1s XPS spectrum obtained from a depth of ~20 nm in sample BT6 after plasma treatment without heating (a); with heating at 300°C (b); 500°C (c); 700°C (d).

Baixar (71KB)
8. Fig. 7. XPS spectra of Ti2p of VT6 samples obtained from a depth of ~20 nm in the initial state (1); after plasma treatment without heating (2); with heating of samples to 300°C (3); 500°C (4); 700°C (5).

Baixar (77KB)
9. Fig. 8. Diffraction patterns of VT6 titanium alloy samples in the initial state (1); after treatment in N+ ion plasma without heating (2), and with heating of samples to temperatures of 300°C (3), 500°C (4), 700°C (5).

Baixar (36KB)
10. Fig. 9. Relative change in microhardness of VT6 titanium alloy samples as a result of treatment in N+ ion plasma without heating (2); with heating of samples to temperatures of 300°C (3), 500°C (4), 700°C (5).

Baixar (9KB)