Influence of Presowing Treatment of Seeds with Salicylic Acid on Growth and Photosynthetic Apparatus of Barley with Different Zinc Contents in Substrate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Under the conditions of a growing experiment, the authors studied the effect of presowing treatment of seeds with salicylic acid (SA) on the growth parameters and photosynthetic apparatus (PSA) of barley plants (Hordeum vulgare L.), which are in optimal conditions of mineral nutrition or with a lack of zinc in the root environment. It has been shown that zinc deficiency does not adversely affect PSA but causes inhibition of plant growth. Presowing treatment of seeds with SA (10 μM) had a stimulating effect on the intensity of photosynthesis and stomatal conductance, which ensured successful plant growth under conditions of zinc deficiency. At the same time, in plants grown from seeds treated with SA, the content of zinc in the roots and shoots was higher than in plants whose seeds were not treated. Based on the obtained results, a conclusion was made on the possibility and prospects of using presowing seed treatment with SA for growing barley plants under conditions of zinc deficiency in the root environment.

About the authors

Anna A. Ignatenko

Institute of Biology, Karelian Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: angelina911@ya.ru
Russian Federation, Petrozavodsk

Yulia V. Batova

Institute of Biology, Karelian Scientific Center, Russian Academy of Sciences

Email: angelina911@ya.ru
Russian Federation, Petrozavodsk

Ekaterina S. Kholoptseva

Institute of Biology, Karelian Scientific Center, Russian Academy of Sciences

Email: angelina911@ya.ru
Russian Federation, Petrozavodsk

Natalia M. Kaznina

Institute of Biology, Karelian Scientific Center, Russian Academy of Sciences

Email: angelina911@ya.ru
Russian Federation, Petrozavodsk

References

  1. Cakmak I., Torun B., Erenoğlu B., Öztürk L.,Marschner H., Kalayci M., Ekiz H., Yilmaz A. Morphological and physiological differences in the response of cereals to zinc deficiency // Euphytica. 1998. V. 100. P. 349.
  2. Сычев В.Г., Аристархов А.Н., Харитонова А.Ф., Толстоусов В.П., Ефимова Н.К., Бушуев Н.Н. Интенсификация продукционного процесса растений микроэлементами. Приемы управления. М.: Всероссийский научно-исследовательский институт агрохимии имени Д.Н. Прянишникова, 2009. 520 с.
  3. Alloway B.J. Zinc in Soil and Crop Nutrition. 2nd Edition. Brussels: International Zinc Association; Paris: International Fertilizer Industry Association. 2008. 139 p.
  4. Казнина Н.М., Титов А.Ф. Влияние дефицита цинка на физиологические процессы и продуктивность злаков // Успехи современной биологии. 2019. Т. 139. С. 280. https://doi.org/10.1134/S0042132419030037
  5. Ali A., Bhat B.A., Rather G.A., Malla B.A., Ganie S. Proteomic studies of micronutrient deficiency and toxicity // Plant Micronutrients. Deficiency and toxicity management / Eds. T. Aftab, K.R. Hakeem. Springer. 2022. P. 257.
  6. Khan S.T., Malik A., Alwarthan A., Shaik M.R. The enormity of the zinc deficiency problem and available solutions; an overview // Arabian J. Chem. 2022. V. 15. https://doi.org/10.1016/j.arabjc.2021.103668
  7. Рябчинская Т.А., Зимина Т.В. Средства, регулирующие рост и развитие растений, в агротехнологиях современного растениеводства // Агрохимия. 2017. Т. 12. С. 62.
  8. Vlot A.C., Dempsey D.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease // Annu. Rev. Phytopathol. 2009. V. 47. P. 177. https://doi.org/10.1146/annurev.phyto.050908.135202
  9. Hayat Q., Hayat S., Irfan M., Ahmad A. Effect of exogenous salicylic acid under changing environment: a review // Environ. Exp. Bot. 2010. V. 68. P. 14. https://doi.org/10.1016/j.envexpbot.2009.08.005
  10. Janda T., Gondor O.K., Yordanova R., Szalai G., Pal M. Salicylic acid and photosynthesis: signalling and effects // Acta Physiol. Plant. 2014. V. 36. P. 2537. https://doi.org/10.1007/s11738-014-1620-y
  11. Шакирова Ф.М. Неспецифическая устойчивость растений к стрессовым факторам и ее регуляция. Уфа: Гилем, 2001. 160 с.
  12. Horvath E., Szalai G., Janda T. Induction of abiotic stress tolerance by salicylic acid signaling // J. Plant Growth Regul. 2007. V. 26. P. 290. https://doi.org/10.1007/s00344-007-9017-4
  13. Khan M.I.R., Fatma M., Per T.S., Anjum N.A., Khan N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants // Front. Plant Sci. 2015. V. 6. https://doi.org/10.3389/fpls.2015.00462
  14. Колупаев Ю.Е., Ястреб Т.О., Поляков А.К., Дмитриев А.П. Салициловая кислота и формирование адаптивных реакций растений на абиотические стрессоры: роль компонентов сигнальной сети // Вестн. Том. гос. ун-та. Биология. 2021. Т. 55. С. 135. https://doi.org/10.17223/19988591/55/8
  15. Wu Q., Jing H.‑K., Feng Z.‑H., Huang J., Shen R.‑F., Zhu X.‑F. Salicylic acid acts upstream of auxin and nitric oxide (NO) in cell wall phosphorus remobilization in phosphorus deficient rice // Rice. 2022. V. 15. https://doi.org/10.1186/s12284-022-00588-y
  16. Su T., Yu S., Yu R., Zhang F., Yu Y., Zhang D., Zhao X., Wang W. Effects of endogenous salicylic acid during calcium deficiency-induced tipburn in chinese cabbage (Brassica rapa L. ssp. pekinensis) // Plant Mol. Biol. Rep. 2016. V. 34. P. 607. https://doi.org/10.1007/s11105-015-0949-8
  17. Kong J., Dong Y., Xu L., Liu S., Bai X. Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. // Bot. Stud. 2014. V. 55. https://doi.org/10.1186/1999-3110-55-9
  18. Shen C., Yang Y., Liu K., Zhang L., Guo H., Sun T., Wang H. Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis // J. Exp. Bot. 2016. V. 67. P. 4179. https://doi.org/10.1093/jxb/erw196
  19. Gunes A., Inal A., Alpaslan M., Cicek N., Guneri E., Eraslan F., Guzelordu T. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.) // Arch. Agron. Soil Sci. 2005. V. 51. P. 687. https://doi.org/10.1080/03650340500336075
  20. Khan N.A., Syeed S., Masood A., Nazar R., Iqbal N. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress // Inter. J. Plant Bio-l. 2010. V. 1. https://doi.org/10.4081/pb.2010.e1
  21. Wang C., Zhang S., Wang P., Hou J., Qian J., Ao Y., Lu J., Li L. Salicylic acid involved in the regulation of nutrient elements uptake and oxidative stress in Vallisneria natans (Lour.) Hara under Pb stress // Chemosphere. 2011. V. 84. P. 136. https://doi.org/10.1016/j.chemosphere.2011.02.026
  22. ГОСТ 12038-84. Межгосударственный стандарт. Семена сельскохозяйственных культур. Методы определения всхожести. Дата введения: 1986-07-01. М.: Изд-во стандартов.
  23. Аникиев В.В., Кутузов Ф.Ф. Новый способ определения площади листовой поверхности у злаков // Физиология растений. 1961. Т. 8. С. 375.
  24. Светов С.А., Степанова А.В., Чаженгина С.Ю., Светова Е.Н., Рыбникова З.П., Михайлова А.И., Парамонов А.С., Утицына В.Л., Эхова М.В., Колодей В.С. Прецезионный (ICP-MS, LA-ICP-MS) анализ состава горных пород и минералов: методика и оценка точности результатов на примере раннедокембрийских мафитовых комплексов // Труды КарНЦ РАН. Сер. Геология докембрия. 2015. № 7. С. 54.
  25. Титов А.Ф., Таланова В.В. Устойчивость растений и фитогормоны. Петрозаводск: Карельский научный центр РАН, 2009. 206 с.
  26. Rhaman M.S., Imran S., Rauf F., Khatun M., Baskin C.C., Murata Y., Hasanuzzaman M. Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress // Plants. 2021. V. 10. https://doi.org/10.3390/plants10010037
  27. Per T.S., Fatma M., Asgher M., Javied S., Khan N.A. Salicylic acid and nutrients interplay in abiotic stress tolerance // Salicylic acid: A multifaceted hormone / Eds. R. Nazar, N. Iqbal, N.A. Khan. Springer. 2017. P. 221.
  28. Krantev A., Yordanova R., Janda T., Szalai G., Popova L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants // J. Plant Physiol. 2008. V. 165. P. 920. https://doi.org/10.1016/j.jplph.2006.11.014
  29. Hossian B., Hirata N., Nagatomo Y., Akashi R., Takaki H. Internal zinc accumulation is correlated with increased growth in rice suspension culture // J. Plant Growth Reg. 1997. V. 16. P. 239.
  30. Chen W., Yang X., He Z. Feng Y., Hu F. Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress // Physiol. Plantarum. 2008. V. 132. P. 89. https://doi.org/10.1111/j.1399-3054.2007.00992.x
  31. Yavas I., Unay A. Effects of zinc and salicylic acid on wheat under drought stress // JAPS. 2016. V. 26. P. 1012.
  32. Pirasteh‑Anosheh H., Ranjbar G., Hasanuzzaman M., Khanna K., Bhardwa R., Ahmad P. Salicylic acid‑mediated regulation of morpho‑physiological and yield attributes of wheat and barley plants in deferring salinity stress // J. Plant Growth Regul. 2022. V. 41. P.1291. https://doi.org/10.1007/s00344-021-10358-7
  33. Yotsova E.K., Dobrikova A.G., Stefanov M.A., Kouzmanova M., Apostolova E.L. Improvement of the rice photosynthetic apparatus defence under cadmium stress modulated by salicylic acid supply to roots // Theor. Exp. Plant Physiol. 2018. V. 30. P. 57. https://doi.org/10.1007/s40626-018-0102-9
  34. Xu L., Zhao H., Ruan W., Deng M., Wang F., Peng J., Luo J., Chen Z., Yib K. ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice // The Plant Cell. 2017. V. 29. P. 560. https://doi.org/10.1105/tpc.16.00665
  35. Wang H., Liu R.L., Jin J.Y. Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize // Biol. Plantarum. 2009. V. 53. P. 191. https://doi.org/10.1007/s10535-009-0033-z
  36. Khan W., Prithiviraj B., Smith D.L. Photosynthetic responses of corn and soybean to foliar application of salicylates // J. Plant Physiol. 2003. V. 160. P. 485. https://doi.org/10.1078/0176-1617-00865
  37. Liu C., Guo J., Cui Y., Lü T., Zhang X., Shi G. Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings // Plant Soil. 2011. V. 344. P.131. https://doi.org/10.1007/s11104-011-0733-y
  38. Husen A., Iqbal M., Sohrab S.S., Ansari M.K.A. Salicylic acid alleviates salinity caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.) // Agric. Food Secur. 2018. V. 7. P. 44. https://doi.org/10.1186/s40066-018-0194-0
  39. Sedaghata M., Tahmasebi Sarvestania Z., Emamb Y., Mokhtassi Bidgolia A., Sorooshzadeha A. Foliar-Applied GR24 and salicylic acid enhanced wheat drought tolerance // Russ. J. Plant Physiol. 2020. V. 67. P. 733. https://doi.org/10.1134/S1021443720040159
  40. Yildirim E., Turan M., Guvenc I. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress // J. Plant Nutr. 2008. V. 31. P. 593. https://doi.org/10.1080/01904160801895118

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (42KB)
3.

Download (54KB)
4.

Download (51KB)

Copyright (c) 2023 А.А. Игнатенко, Ю.В. Батова, Е.С. Холопцева, Н.М. Казнина