Effect of Acclimation to High Temperatures on the Mechanisms of Drought Tolerance in Species with Different Types of Photosynthesis: Sedobassia sedoides (C3–C4) and Bassia prostrata (C4-NADP)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of drought on the morphophysiological, biochemical, and molecular genetic parameters of plants Sedobassia sedoides (Pall.) Freitag & G. Kadereit with an intermediate C3–C4-type of photosynthesis and Bassia prostrata (L.) A.J. Scott with a C4-NADP type of photosynthesis grown at different temperatures (25 and 30°C) was studied. A decrease in the biomass, water content, and effective quantum yield (ΦPSII) of PSII, as well as an increase in the expression of the psbA gene encoding the PSII D1 protein under the action of drought, was observed in both species regardless of the growing temperature. Both species showed a decrease in the content of photosynthetic enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) under drought conditions at 25°С, which was accompanied by a significant increase in the expression of the rbcL and PPDK genes in S. sedoides. Acclimation of S. sedoides plants to elevated temperatures led to an increase in the activity of cyclic electron transport around PSI, to mitigation of the negative effect of drought on the light reactions of photosynthesis (reduction in NPQ) and the content of the PEPC enzyme, as well as to a shift in the ionic balance caused by a decrease in the potassium content. B. prostrata showed greater drought resistance and was characterized by greater thermolability of photosynthetic enzymes, changes in the content and ratio of which allowed this species to maintain growth in drought conditions at different temperatures.

About the authors

E. V. Shuyskaya

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: evshuya@gmail.com
Moscow, Russia

Z. F. Rakhmankulova

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: evshuya@gmail.com
Moscow, Russia

M. Yu. Prokofieva

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: evshuya@gmail.com
Moscow, Russia

V. V. Kazantseva

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: evshuya@gmail.com
Moscow, Russia

N. F. Lunkova

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: evshuya@gmail.com
Moscow, Russia

L. T. Saidova

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Author for correspondence.
Email: evshuya@gmail.com
Moscow, Russia

References

  1. IPCC. Future global climate: Scenario-based projections and near-term information // Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change / V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekci, R. Yu, B. Zhou (Eds.). Cambridge University Press, 2021. P. 553.
  2. Sonmez M.C., Ozgur R., Uzilday D., Turkan I., Ganie S.A. Redox regulation in C3 and C4 plants during climate change and its implications on food security // Food Energy Secur. 2022. V. 12: e387. https://doi.org/10.1002/fes3.387
  3. Raja V., Qadir S.U., Alyemeni M.N., Ahmad P. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum // 3 Biotech. 2020. V. 10. P. 208. https://doi.org/10.1007/s13205-020-02206-4
  4. Ripley B., Frole K., Gilbert M. Differences in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) Panicoid grasses // Ann. Bot. 2010. V. 105. P. 493. https://doi.org/10.1093/aob/mcp307
  5. Alyammahi O., Gururani M.A. Chlorophyll-a fluorescence analysis reveals differential response of photosynthetic machinery in melatonin-treated oat plants exposed to osmotic stress // Agronomy. 2020. V. 10. P. 1520. https://doi.org/10.3390/agronomy10101520
  6. Rakhmankulova Z.F., Shuyskaya E.V., Prokofieva M.Yu., Borovkov A.M., Voronin P.Yu. Comparative contribution of CO2/H2O exchange components to the process of adaptation to drought in xero-halophytes from the family Chenopodiaceae with different types of photosynthesis // Russ. J. Plant Physiol. 2020. V. 67. P. 494. https://doi.org/10.1134/S102144372003019X
  7. Zhang Q., Huang J., Ke W., Cai M., Chen G., Peng C. Responses of Sphagneticola trilobata, Sphagneticola calendulacea and their hybrid to drought stress // Int. J. Mol. Sci. 2021. V. 22. P. 11288. https://doi.org/10.3390/ijms222011288
  8. da Silva M.C., Pinto P.I.S., Guerra R., Duarte A., Power D.M., Marques N.T. Gene transcripts responsive to drought stress identified in Citrus macrophylla bark tissue transcriptome have a modified response in plants infected by Citrus tristeza virus // Sci. Hortic. 2023. V. 307. P. 111526. https://doi.org/10.1016/j.scienta.2022.111526
  9. Galmés J., Aranjuelo I., Medrano H., Flexas J. Variation in Rubisco content and activity under variable climatic factors // Photosynth. Res. 2013. V. 117. P. 73. https://doi.org/10.1007/s11120-013-9861-y
  10. Amoah J.N., Seo Y.W. Effect of progressive drought stress on physio‑biochemical responses and gene expression patterns in wheat // 3 Biotech. 2021. V. 11. P. 440. https://doi.org/10.1007/s13205-021-02991-6
  11. He Y., Yu Ch., Zhou L., Chen Y., Liu A., Jin J., Hong J., Qi Y., Jiang D. Rubisco decrease is involved in chloroplast protrusion and Rubisco-containing body formation in soybean (Glycine max.) under salt stress // Plant Physiol. Biochem. 2014. V. 74: 118e124. https://doi.org/10.1016/j.plaphy.2013.11.008
  12. Yoshitake Y., Nakamura S., Shinozaki D., Izumi M., Yoshimoto K., Ohta H., Shimojima M. RCB-mediated chlorophagy caused by oversupply of nitrogen suppresses phosphate-starvation stress in plants // Plant Physiol. 2021. V. 185. P. 318. https://doi.org/10.1093/plphys/kiaa030
  13. AbdElgawad H., Avramova V., Baggerman G., Van Raemdonck G., Valkenbog D., Van Ostade X., Guisez Y., Prinsen E., Asard H., Ende W., Beemster G. Starch biosynthesis is crucial for maintaining photosynthesis and leaf growth under drought stress // Authorea. 2020. https://doi.org/10.22541/au.158498002.27084474
  14. Hussain T., Koyro H.-W., Zhang W., Liu X., Gul B. Liu X. Low salinity improves photosynthetic performance in Panicum antidotale under drought stress // Front. Plant Sci. 2020. V. 11. P. 481. https://doi.org/10.3389/fpls.2020.00481
  15. Jeanneau M., Vidal J., Gousset-Dupont A., Lebouteiller B., Hodges M., Gerentes D., Perez P. Manipulating PEPC levels in plants // J. Exp. Bot. 2002. V. 53. P. 1837. https://doi.org/10.1093/jxb/erf061
  16. Yadav S., Rathore M.S., Mishra A. The pyruvate-phosphate dikinase (C4-SmPPDK) gene from Suaeda monoica enhances photosynthesis, carbon assimilation, and abiotic stress tolerance in a C3 plant under elevated CO2 conditions // Front. Plant Sci. 2020. V. 11. P. 345. https://doi.org/10.3389/fpls.2020.00345
  17. Yamori W., Hikosaka K., Way D.A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation // Photosynth. Res. 2014. V. 119. P. 101. https://doi.org/10.1007/s11120-013-9874-6
  18. Allakhverdiev S.I., Kreslavski V.D., Fomina I.R., Los D.A., Klimov V.V., Mimuro M., Mohanty P., Carpentier R. Inactivation and repair of photosynthetic machinery under heat stress // Photosynthesis: overviews on recent progress and future perspective. IK International Publishing House Pvt. Ltd., New Delhi, 2012. P. 189
  19. Cavanagh A.P., Kubien D.S. Can phenotypic plasticity in Rubisco performance contribute to photosynthetic acclimation? // Photosynth. Res. 2014. V. 119. P. 203. https://doi.org/10.1007/s11120-013-9816-3
  20. Sharwood R.E., Ghannoum O., Kapralov M.V., Gunn L.H., Whitney S.M. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis // Nat. Plants. 2016. V. 2. P. 16186. https://doi.org/10.1038/nplants.2016.186
  21. Moore C.E., Meacham-Hensold K., Lemonnier P., Slattery R.A., Benjamin C., Bernacchi C.J., Lawson T., Cavanagh A.P. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems // J. Exp. Bot. 2021. V. 72. P. 2822. https://doi.org/10.1093/jxb/erab090
  22. Danilova M.N., Kudryakova N.V., Andreeva A.A., Doroshenko A.S., Pojidaeva E.S., Kusnetsov V.V. Differential impact of heat stress on the expression of chloroplast-encoded genes// Plant Physiol. Biochem. 2018. V. 129. P. 90. https://doi.org/10.1016/j.plaphy.2018.05.023
  23. Lundgren M.R., Christin P.-A. Despite phylogenetic effects, C3–C4 lineages bridge the ecological gap to C4 photosynthesis // J. Exp. Bot. 2017. V. 68. P. 241. https://doi.org/10.1093/jxb/erw451
  24. Munekage Y.N., Taniguchi Y.Y. A scheme for C4 evolution derived from a comparative analysis of the closely related C3, C3–C4 intermediate, C4-like, and C4 species in the genus Flaveria // Plant Mol. Biol. 2022. V. 110. P. 445. https://doi.org/10.1007/s11103-022-01246-z
  25. Sage R.F., Khoshravesh R., Sage T.L. From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis // J. Exp. Bot. 2014. V. 65. P. 3341. https://doi.org/10.1093/jxb/eru180
  26. Lundgren M.R. C2 photosynthesis: a promising route towards crop improvement? // New Phytol. 2020. V. 228. P. 1734. https://doi.org/10.1111/nph.16494
  27. Walsh C.A., Bräutigam A., Roberts M.R., Lundgren M.R. Evolutionary implications of C2 photosynthesis: how complex biochemical trade-offs may limit C4 evolution // J. Exp. Bot. 2023. V. 74. P. 707. https://doi.org/10.1093/jxb/erac465
  28. Rakhmankulova Z.F., Shuyskaya E.V., Khalilova L.A., Orlova Y.V., Burundukova O.L., Velivetskaya T.A., Ignat’ev A.V. Ultra- and mesostructural response to salinization in two populations of C3–C4 intermediate species Sedobassia sedoides // Russ. J. Plant Physiol. 2020. V. 67. P. 835. https://doi.org/10.1134/S1021443720040135
  29. Bates L.S., Waldren R.P., Teare I.D. Rapid determination of free proline for water stress studies // Plant Soil. 1973. V. 39. P. 205. https://doi.org/10.1007/BF00018060
  30. Пожидаева Е.С. Вестерн-блот-гибридизация // Молекулярно-генетические и биохимические методы в современной биологии растений / Под ред. Вл.В. Кузнецова, В.В. Кузнецова, Г.А. Романова. Москва: Бином. Лаборатория знаний. 2011. С. 228.
  31. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. 1970. V. 227. P. 680. https://doi.org/10.1038/227680a0
  32. Szabados L., Savoure A. Proline: a multifunctional amino acid // Trends Plant Sci. 2010. V. 15. P. 89.
  33. Brestic M., Zivcak M. PSII fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications // Molecular stress physiology of plants / Eds. G.R. Rout, A.B. Das. Dordrecht: Springer, 2013. P. 87. https://doi.org/10.1007/978-81-322-0807-5
  34. Kusnetsov V.V. Chloroplasts: structure and expression of the plastid genome // Russ. J. Plant Physiol. 2018. V. 65. P. 465. https://doi.org/10.1134/S1021443718030044
  35. Singh J., Garai S., Das S., Thakur J.K., Tripathy B.C. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops // Photosynth. Res. 2022. V. 154. P. 233. https://doi.org/10.1007/s11120-022-00978-9
  36. Xu Z.Z., Zhou G.S. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis // Planta. 2006. V. 224. P. 1080. https://doi.org/10.1007/s00425-006-0281-5
  37. Flowers T.J., Colmer T.D. Plant salt tolerance: adaptation in halophytes // Ann. Bot. 2015. V. 115. P. 327. https://doi.org/10.1093/aob/mcu267
  38. Liu H., Osborne C.P. Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability // J. Exp. Bot. 2015. V. 66. P. 761.
  39. Dzyubenko N.I., Soskov Yu.D., Khusainov S.Kh., Agaev M.G. Morphology and geography of the ecotypes Kochia prostrata (L.) Schrad. from Middle Asia, Kazakhstan and Mongolia // Sel’skokhozyaistvennaya Biol. 2009. V. 44 (5). P. 25.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (269KB)
3.

Download (129KB)
4.

Download (338KB)
5.

Download (158KB)
6.

Download (153KB)

Copyright (c) 2023 Е.В. Шуйская, З.Ф. Рахманкулова, М.Ю. Прокофьева, В.В. Казанцева, Н.Ф. Лунькова, Л.Т. Саидова