Parameters for Induction Curves of Prompt and Delayed Fluorescence and Redox State of PSI–P700 for Birch and Linden Leaves in Various Urban Environments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The photosynthetic characteristics of linden leaves (Tilia cordata L.) and birches (Betula verrukosa L.) growing near the city highways of Moscow (MKAD, Moscow Ring Road) by simultaneously recording the induction curves of chlorophyll fluorescence and the redox state of the PSI pigment–P700. In trees near highways, deterioration of electron transport at the level of plastoquinones (δRo) and decrease of P700+ reduction was revealed, despite the rather high rates of photosynthetic efficiency (FV/FM). In birch leaves growing along the Moscow Ring Road, a decrease in the outflow of electrons from PSI and a decrease in the intensity of delayed fluorescence at 30 ms and 1 s, associated with a decrease in the electrical and chemical components of the electrochemical proton gradient on photosynthetic membranes, were revealed. In plants near highways, an increase in the degree of photoinhibition and a slowdown in the reactions of restoring photosynthetic activity in the dark after the cessation of photooxidative stress were noted, which confirms the probable effect of unfavorable urban conditions on the biosynthesis of proteins in PSII reaction centers. The following fluorescence parameters are proposed as indicators of the state of trees in an urban environment: total performance index (PItotal) and the quantum yield of reduction of electron acceptors on the acceptor side of PSI (φRo).

About the authors

D. A. Todorenko

Moscow State University

Email: yakovleva@gmail.com
Moscow, Russia

O. V. Yakovleva

Moscow State University

Email: yakovleva@gmail.com
Moscow, Russia

A. A. Alekseev

Ammosov Northeastern Federal University

Email: yakovleva@gmail.com
Moscow, Russia

D. N. Matorin

Moscow State University

Author for correspondence.
Email: yakovleva@gmail.com
Moscow, Russia

References

  1. Венедиктов П.С., Казимирко Ю.В., Кренделева Т.Е., Кукарских Г.П., Макарова В.В., Погосян С.И., Яковлева О.В., Рубин А.Б. Изучение физиологического состояния древесных растений по характеристикам флуоресценции в коре однолетних побегов деревьев // Экология. 2000. № 5. С. 338.
  2. Волгушева А.А., Яковлева О.В., Кукарских Г.П., Ризниченко Г.Ю., Кренделева Т.Е. Использование показателя PI для оценки физиологического состояния деревьев в городских экосистемах // Биофизика. 2011. Т. 56. С.105.
  3. Fusaro L., Salvatori E., Winkler A., Frezzini M.A., De Santis E., Sagnotti L., Canepari S., Manes F. Urban trees for biomonitoring atmospheric particulate matter: an integrated approach combining plant functional traits, magnetic and chemical properties // Ecol. Indic. 2021. V. 126. P. 107707. https://doi.org/10.1016/j.ecolind.2021.107707
  4. Swoczyna T., Kalaji H.M., Bussotti F., Mojski J., Pollastrini M. Environmental stress - what can we learn from chlorophyll a fluorescence analysis in woody plants? A review // Front. Plant Sci. 2022. V. 13. P. 1. https://doi.org/10.3389/fpls.2022.1048582
  5. Huarancca Reyes T., Scartazza A., Bretzel F., Di Baccio D., Guglielminetti L., Pini R., Calfapietra C. Urban conditions affect soil characteristics and physiological performance of three evergreen woody species // Plant Physiol. Biochem. 2022. V. 171. P. 169. https://doi.org/10.1016/j.plaphy.2021.12.030
  6. Маторин Д.Н., Рубин А.Б. Флуоресценции хлорофилла высших растений и водорослей // Москва–Ижевск: Институт компьютерных исследований. 2012. 256 с.
  7. Гольцев В.Н., Каладжи М.Х., Кузманова М.А., Аллахвердиев С.И. Переменная и замедленная флуоресценция хлорофилла a – теоретические основы и практическое приложение в исследовании растений // Москва–Ижевск: Институт компьютерных исследований. 2014. 220 с.
  8. Schreiber U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an Overview // Chlorophyll a fluorescence: a signature of photosynthesis / Eds. G. Papageorgiou and Govindjee. Springer. 2004. P. 279. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_11
  9. Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the chlorophyll a fluorescence transient // Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration / Eds. G. Papageorgiou and Govindjee. Springer. 2004. V. 19. P. 321. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_12
  10. Bąba W., Kompała-Bąba A., Zabochnicka-Świątek M., Luźniak J., Hanczaruk R., Adamski A., Kalaji H.M. Discovering trends in photosynthesis using modern analytical tools: more than 100 reasons to use chlorophyll fluorescence // Photosynthetica. 2019. V. 57. P. 668. https://doi.org/10.32615/ps.2019.069
  11. Clark A.J., Landolt W., Bucher J.B., Strasser R.J. Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index // Environ. Pollut. 2000. V. 109. P. 501. https://doi.org/10.1016/S0269-7491(00)00053-1
  12. Adams W.W., Demming-Adams B. Chlorophyll fluorescence as a tool to monitor plant response to the environment // Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration / Eds. G. Papageogiou and Govindjee. Springer. 2004. V. 19. P. 583. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_22
  13. Cavender-Bares J., Bazzaz F.A. From leaves to ecosystems: using chlorophyll fluorescence to access photosynthesis and plant function in ecological studies // Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration / Eds. G. Papageogiou and Govindjee. Springer. 2004. V. 19. P. 737. https://doi.org/10.1007/978-1-4020-3218-9_29
  14. Murchie E.H., Lawson T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications // J. Exp. Bot. 2013. V. 64. Iss. 13. P. 3983. https://doi.org/10.1093/jxb/ert208
  15. Lazár D. Modelling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nm – transmittance signal of photosynthesis // Photosynthetica. 2009. V. 47. P. 483. https://doi.org/10.1007/s11099-009-0074-8
  16. Schansker G., Tóth S.Z., Strasser R.J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP // BBA. 2005. V. 1706. P. 250. https://doi.org/10.1016/j.bbabio.2004.11.006
  17. Oukarroum A., Goltsev V., Strasser R.J. Temperature effects on pea plants probed by simultaneous measurements of the kinetics of prompt fluorescence, delayed fluorescence and modulated 820 nm reflection // PLoS ONE. 2013. V. 8. P. e59433. https://doi.org/10.1371/journal.pone.0059433
  18. Hermans C., Smeyers M., Rodrigues R.M., Eyletter M., Strasser R., Dehaye J.P. Quality assessment of urban’s trees: a comparative study of physiological characterization, airborne imaging and on site fluorescence monitoring by the OJIP test // J. Plant Physiol. 2003. V. 160. P. 81. https://doi.org/10.1078/0176- 1617-00917
  19. Prasad M.N.V., Strzałka K. Impact of heavy metals on photosynthesis // Heavy metal stress in plants: from molecules to ecosystems / Eds. M.N.V. Prasad and J. Hagemeyer. Springer. 1999. P. 117.
  20. Souri Z., Cardoso A.A., da-Silva C.J., de Oliveira L.M., Dari B., Sihi D., Karimi N. Heavy metals and photosynthesis: recent developments // Photosynthesis, productivity and environmental stress / Eds. P. Ahmad et al. 2019. P. 107. https://doi.org/10.1002/9781119501800.ch7
  21. Todorenko D., Timofeev N., Kovalenko I.B., Kukarskikh G.P., Matorin D.N., Antal T.K. Chromium effects on photosynthetic electron transport in pea (Pisum sativum L.) // Planta. 2020. V. 251. P. 11. https://doi.org/10.1007/s00425-019-03304-1
  22. Todorenko D., Volgusheva A., Timofeev N., Kovalenko I., Matorin D., Antal T. Multiple in vivo effects of cadmium on photosynthetic electron transport in pea plants // Photochem. Photobiol. 2021. V. 97. P. 1516. https://doi.org/10.1111/php.13469
  23. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis // BBA. 2010. V. 1797. P. 1313. https://doi.org/10.1016/j.bbabio.2010.03.008
  24. Shen J., Li X., Zhu X., Ding Z., Huang X., Chen X., Jin S. Molecular and photosynthetic performance in the yellow leaf mutant of Torreya grandis according to transcriptome sequencing, chlorophyll a fluorescence, and modulated 820 nm reflection // Cells. 2022. V. 11. P. 431. https://doi.org/10.3390/cells11030431
  25. Zivcak M., Olsovska K., Slamka P., Galambošová J., Rataj V., Shao H.B., Brestič M. Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency // Plant Soil Environ. 2014. V. 60 P. 210. https://doi.org/10.17221/73/2014-PSE
  26. Murata N., Takabashi S., Nishiyama Y., Allakhverdiev S.I. Photoinhibition of photosystem II under environmental stress // BBA. 2007. V. 1767. P. 414. https://doi.org/10.1016/j.bbabio.2006.11.019
  27. Aro E.-M., Virgin I., Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover // BBA. 1993. V. 1143. P. 113. https://doi.org/10.1016/0005-2728(93)90134-2
  28. Chow W.S., Aro E.-M. Photoinactivation and mechanisms of recovery // Photosystem II: the light-driven water: plastoquinone oxidoreductase / Eds. T. Wydrzynski and K. Satoh. Springer. 2005. P. 627.
  29. Vavilin D.V., Polynov V.A., Matorin D.N., Venediktov P.S. The subletal concentrations of copper stimulate photosystem II photoinhibition in Chlorella pyrenoidosa // J. Plant Physiol. 1995. V. 146. P. 609. https://doi.org/10.1016/S0176-1617(11)81922-X
  30. Kalaji H.M., Jajoo A., Oukarroum A., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Łukasik I., Goltsev V., Ladle R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions // Acta Physiol. Plant. 2016. V. 38. P. 102. https://doi.org/10.1007/s11738-016-2113-y
  31. Paunov M., Koleva L., Vassilev A., Vangronsveld J., Goltsev V. Effects of different metals on photosynthesis: cadmium and zinc. Affect chlorophyll fluorescence in Durum wheat // Int. J. Mol. Sci. 2018. V. 19. P. 787. https://doi.org/10.3390/ijms19030787
  32. Орехов Д.И., Яковлева О.В., Горячев С.Н., Протопопов Ф.Ф., Алексеев А.А. Использование параметров индукции флуоресценции хлорофилла а для оценки состояния растений в условиях антропогенной нагрузки // Биофизика. 2015. V. 60. № 2. С. 330.
  33. Устынюк Л.Ю., Тихонов А.Н. Окисление пластохинола – лимитирующая стадия в цепи переноса электронов в хлоропластах // Биохимия. 2022. Т. 87. № 10. С. 1372. https://doi.org/10.31857/S0320972522100049
  34. Bussotti F., Gerosa G., Digrado A., Pollastrini M. Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies // Ecol. Indic. 2020. V. 108. P. 105686. https://doi.org/10.1016/j.ecolind.2019.105686
  35. Bussotti F., Desotgiu R., Cascio C., Pollastrini M., Gravano E., Gerosa G., Marzuoli R., Nali C., Lorenzini G., Salvatori E., Manes F., Schaub M., Strasser R.J. Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data // Environ. Exp. Bot. 2011. V. 73. P. 19. https://doi.org/10.1016/j.envexpbot.2010.10.022
  36. Zhang S., Gao R. Diurnal changes of gas exchange, chlorophyll fluorescence, and stomatal aperture of hybrid poplar clones subjected to midday light stress // Photosynthetica. 2000. V. 37. P. 559. https://doi.org/10.1023/A:1007119524389
  37. Guo W.D., Guo Y.P., Liu J.R., Mattson N. Midday depression of photosynthesis is related with carboxylation efficiency decrease and D1 degradation in bayberry (Myrica rubra) plants // Sci. Hortic. 2009. V. 123. P. 188. https://doi.org/10.1016/j.scienta.2009.07.014
  38. Pätsikkä E., Aro E-M., Tyystjärvi E. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo // Plant Physiol. 1998. V. 117. P. 619.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (201KB)
3.

Download (377KB)
4.

Download (169KB)
5.

Download (185KB)
6.

Download (124KB)

Copyright (c) 2023 Д.А. Тодоренко, О.В. Яковлева, А.А. Алексеев, Д.Н. Маторин