Транзиентная экспрессия генов в растениях ‒ эффективная экспериментальная платформа для функциональной геномики

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Большой массив данных об экспрессии генов растений, накопленный благодаря сравнительным исследованиям, направляет усилия исследователей для изучения тонких механизмов влияния целевых генов и, как следствие, на разработку относительно простых и одновременно эффективных подходов, позволяющих понять физиологическую роль белковых продуктов гена. Многочисленные исследования убедительно продемонстрировали эффективность стратегии транзиентной экспрессии для характеристики функций генов растений. Цели обзора: (i) рассмотреть преимущества и ограничения различных растительных систем и методов временной экспрессии, используемых для выяснения роли генных продуктов; (ii) обобщить текущие данные об использовании подходов к временной экспрессии для понимания тонких механизмов, лежащих в основе функции генов; (iii) описать достижения в области эффективной временной экспрессии генов растений. В обзоре обсуждаются основные и критические этапы каждого из методов транзиентной экспрессии генов у растений, области их применения, а также основные результаты, полученные с использованием растительных объектов и их вклад в наши знания о тонких механизмах функций генов, лежащих в основе роста и развития растений, включая выяснение механизмов, регулирующих сложные метаболические пути.

全文:

受限制的访问

作者简介

И. Голденкова-Павлова

Федеральное государственное бюджетное научное учреждение Институт физиологии растений им. К.А. Тимирязева Российской академии наук

编辑信件的主要联系方式.
Email: irengold58@gmail.com
俄罗斯联邦, Москва

О. Павленко

Федеральное государственное бюджетное научное учреждение Институт физиологии растений им. К.А. Тимирязева Российской академии наук

Email: irengold58@gmail.com
俄罗斯联邦, Москва

И. Демьянчук

Федеральное государственное бюджетное научное учреждение Институт физиологии растений им. К.А. Тимирязева Российской академии наук

Email: irengold58@gmail.com
俄罗斯联邦, Москва

В. Фридман

Федеральное государственное бюджетное научное учреждение Институт физиологии растений им. К.А. Тимирязева Российской академии наук

Email: irengold58@gmail.com
俄罗斯联邦, Москва

А. Тюрин

Федеральное государственное бюджетное научное учреждение Институт физиологии растений им. К.А. Тимирязева Российской академии наук

Email: irengold58@gmail.com
俄罗斯联邦, Москва

参考

  1. Viacheslavova A.O., Berdichevets I.N., Tiurin A.A., Shimshilashvili K.R., Mustafaev O., Goldenkova-Pavlova I. V. Expression of heterologous genes in plant systems: new possibilities. // Genetika. 2012. V. 48. P. 1245. https://doi.org/10.1134/S1022795412110130
  2. Hwang H.-H., Yu M., Lai E.-M. Agrobacterium-mediated plant transformation: biology and applications // Arabidopsis Book. 2017. V. 15. P. e0186. https://doi.org/10.1199/tab.0186
  3. Wu H.Y., Liu K.H., Wang Y.C., Wu J.F., Chiu W.L., Chen C.Y., Wu S.H., Sheen J., Lai E.M. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings // Plant Methods. 2014. V. 10. P. 1. https://doi.org/10.1186/1746-4811-10-19/FIGURES/10
  4. Tsuda K., Qi Y., Nguyen L. V., Bethke G., Tsuda Y., Glazebrook J., Katagiri F. An efficient Agrobacterium-mediated transient transformation of Arabidopsis // Plant J. 2012. V. 69. P. 713. https://doi.org/10.1111/J.1365-313X.2011.04819.X
  5. Jones H.D., Doherty A., Sparks C.A. Transient transformation of plants // Methods Mol. Biol. 2009. V. 513. P. 131. https://doi.org/10.1007/978-1-59745-427-8_8
  6. Kaur M., Manchanda P., Kalia A., Ahmed F.K., Nepovimova E., Kuca K., Abd-Elsalam K.A. Agroinfiltration mediated scalable transient gene expression in genome edited crop plants // Int. J. Mol. Sci. 2021. V. 22. P. 10882. https://doi.org/10.3390/IJMS221910882
  7. Zagorskaya A.A., Deineko E. V. Suspension-cultured plant cells as a platform for obtaining recombinant proteins // Russ. J. Plant Physiol. 2017. V. 64. P. 795. https://doi.org/10.1134/S102144371705017X/METRICS
  8. Rivero L., Scholl R., Holomuzki N., Crist D., Grotewold E., Brkljacic J. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses // Methods Mol. Biol. 2014. V. 1062. P. 3. https://doi.org/10.1007/978-1-62703-580-4_1
  9. Gleba Y., Klimyuk V., Marillonnet S. Magnifection ‒ a new platform for expressing recombinant vaccines in plants // Vaccine. 2005. V. 23. P. 2042. https://doi.org/10.1016/J.VACCINE.2005.01.006
  10. Heenatigala P.P.M., Yang J., Bishopp A., Sun Z., Li G., Kumar S., Hu S., Wu Z., Lin W., Yao L., Duan P., Hou H. Development of efficient protocols for stable and transient gene transformation for Wolffia globosa using Agrobacterium // Front. Chem. 2018. V. 6. P. 356676. https://doi.org/10.3389/FCHEM.2018.00227/BIBTEX
  11. Krenek P., Samajova O., Luptovciak I., Doskocilova A., Komis G., Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications // Biotechnol. Adv. 2015. V. 33. P. 1024. https://doi.org/10.1016/J.BIOTECHADV.2015.03.012
  12. Zhang Y., Chen M., Siemiatkowska B., Toleco M.R., Jing Y., Strotmann V., Zhang J., Stahl Y., Fernie A.R. A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species // Plant Commun. 2020. V. 1. P. 100028. https://doi.org/10.1016/J.XPLC.2020.100028
  13. Chen Q., Lai H. Gene delivery into plant cells for recombinant protein production // Biomed Res. Int. 2015. V. 2015. P. 32161. https://doi.org/10.1155/2015/932161
  14. Jelly N.S., Valat L., Walter B., Maillot P. Transient expression assays in grapevine: a step towards genetic improvement // Plant Biotechnol. J. 2014. V. 12. P. 1231. https://doi.org/10.1111/PBI.12294
  15. Guidarelli M., Baraldi E. Transient transformation meets gene function discovery: the strawberry fruit case // Front. Plant Sci. 2015. V. 6. P. 139872. https://doi.org/10.3389/FPLS.2015.00444/BIBTEX
  16. Cao J., Yao D., Lin F., Jiang M. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize // Acta Physiol. Plant. 2014. V. 36. P. 1271. https://doi.org/10.1007/S11738-014-1508-X/FIGURES/6
  17. Tan B., Xu M., Chen Y., Huang M. Transient expression for functional gene analysis using Populus protoplasts // Plant Cell Tissue Organ Cult. 2013. V. 114. P. 11. https://doi.org/10.1007/S11240-013-0299-X/FIGURES/4
  18. Burris K.P., Dlugosz E.M., Collins A.G., Stewart C.N., Lenaghan S.C. Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.) // Plant Cell Rep. 2016. V. 35. P. 693. https://doi.org/10.1007/S00299-015-1913-7
  19. Klein T.M., Wolf E.D., Wu R., Sanford J.C. High-velocity microprojectiles for delivering nucleic acids into living cells // Nature. 1987. V. 327. P. 70. https://doi.org/10.1038/327070a0
  20. Schmidt M.A., Herman E.M. Characterization and functional biology of the soybean aleurone layer // BMC Plant Biol. 2018. V. 18. P. 1. https://doi.org/10.1186/S12870-018-1579-8/FIGURES/4
  21. Fischer R., Emans N. Molecular farming of pharmaceutical proteins // Transgenic Res. 2000. V. 9. P. 279. https://doi.org/10.1023/A:1008975123362
  22. Donini M., Marusic C. Current state-of-the-art in plant-based antibody production systems // Biotechnol. Lett. 2019. V. 41. P. 335. https://doi.org/10.1007/S10529-019-02651-Z
  23. Wang H., Wang W., Zhan J., Huang W., Xu H. An efficient PEG-mediated transient gene expression system in grape protoplasts and its application in subcellular localization studies of flavonoids biosynthesis enzymes // Sci. Hortic. 2015. V. 191. P. 82. https://doi.org/10.1016/J.SCIENTA.2015.04.039
  24. Vaghchhipawala Z., Rojas C.M., Senthil-Kumar M., Mysore K.S. Agroinoculation and agroinfiltration: simple tools for complex gene function analyses // Methods Mol. Biol. 2011. V. 678. P. 65. https://doi.org/10.1007/978-1-60761-682-5_6
  25. Wang Y.C., Yu M., Shih P.Y., Wu H.Y., Lai E.M. Stable pH suppresses defense signaling and is the key to enhance Agrobacterium-mediated transient expression in Arabidopsis seedlings // Sci. Rep. 2018. V. 8. P. 1. https://doi.org/10.1038/s41598-018-34949-9
  26. Shoukat S., Amir Zia M., Ali S. Functional characterization of a novel synthetic herbicide resistance gene in a model plant // Sains Malays. 2023. V. 52. P. 1133. https://doi.org/10.17576/jsm-2023-5204-08
  27. Tyurin A.A., Mustafaev O., Suhorukova A. V., Pavlenko O.S., Fridman V.A., Demyanchuk I.S., Goldenkova-Pavlova I. V. Modulation of the translation efficiency of heterologous mRNA and target protein stability in a plant system: the case study of interferon-αA // Plants. 2022. V. 11. P. 2450. https://doi.org/10.3390/PLANTS11192450/S1
  28. Hidvégi N., Gulyás A., Teixeira da Silva J.A., Wicaksono A., Kiss E. Promoter analysis of the SPATULA (FvSPT) and SPIRAL (FvSPR) genes in the woodland diploid strawberry (Fragaria vesca L.) // Biol. Futur. 2021. V. 72. P. 373. https://doi.org/10.1007/S42977-021-00089-X
  29. Sheshukova E.V., Ershova N.M., Lipskerov F.A., Komarova T.V. Enhanced synthesis of foreign nuclear protein stimulates viral reproduction via the induction of γ-thionin expression // Plants. 2022. V. 11. P. 11121530. https://doi.org/10.3390/PLANTS11121530
  30. Doan P.P.T., Kim J.H., Kim J. Rapid investigation of functional roles of genes in regulation of leaf senescence using Arabidopsis protoplasts // Front. Plant Sci. 2022. V. 13. P. 818239. https://doi.org/10.3389/FPLS.2022.818239/BIBTEX
  31. Berestovoy M., Pavlenko O.S., Tyurin A.A., Gorshkova E.N., Goldenkova-Pavlova I.V. Altered fatty acid composition of Nicotiana benthamiana and Nicotiana excelsior leaves under transient overexpression of the cyanobacterial desC gene // Biol. Plant. 2020. V. 64. P. 167. https://doi.org/10.32615/bp.2019.144
  32. Xiao X., Meng F., Satheesh V., Xi Y., Lei M. An Agrobacterium-mediated transient expression method contributes to functional analysis of a transcription factor and potential application of gene editing in Chenopodium quinoa // Plant Cell Rep. 2022. V. 41. P. 1975. https://doi.org/10.1007/S00299-022-02902-W
  33. Yao X., Qu F., Lewis M.L., Xia I.Y. Assessing herbicide tolerance potential of the rice HIS1 protein in Nicotiana benthamiana and soybean // MS thesis. Ohio State. 2021.
  34. Bertazzon N., Raiola A., Castiglioni C., Gardiman M., Angelini E., Borgo M., Ferrari S. Transient silencing of the grapevine gene VvPGIP1 by agroinfiltration with a construct for RNA interference // Plant Cell Rep. 2012. V. 31. P. 133. https://doi.org/10.1007/S00299-011-1147-2
  35. Li Q., Ji K., Sun Y., Luo H., Wang H., Leng P. The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry // Plant J. 2013. V. 76. P. 24. https://doi.org/10.1111/TPJ.12272
  36. Hua-Ying M., Wen-Ju W., Wei-Hua S., Ya-Chun S., Feng L., Cong-Na L., Ling W., Xu Z., Li-Ping X., You-Xiong Q. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane // Plant Cell Rep. 2019. V. 38. P. 637. https://doi.org/10.1007/S00299-019-02394-1
  37. Olmedo P., Moreno A.A., Sanhueza D., Balic I., Silva-Sanzana C., Zepeda B., Verdonk J.C., Arriagada C., Meneses C., Campos-Vargas R. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus // Plant Sci. 2018. V. 266. P. 46. https://doi.org/10.1016/J.PLANTSCI.2017.10.012
  38. Zhang X.S., Ni R., Wang P.Y., Zhu T.T., Sun C.J., Lou H.X., Cheng A.X. Isolation and functional characterization of two Caffeoyl Coenzyme A 3-O-methyltransferases from the fern species Polypodiodes amoena // Plant Physiol. Biochem. 2019. V. 136. P. 169. https://doi.org/10.1016/J.PLAPHY.2019.01.021
  39. Sun X., Yu G., Li J., Liu J., Wang X., Zhu G., Zhang X., Pan H. AcERF2, an ethylene-responsive factor of Atriplex canescens, positively modulates osmotic and disease resistance in Arabidopsis thaliana // Plant Sci. 2018. V. 274. P. 32. https://doi.org/10.1016/J.PLANTSCI.2018.05.004
  40. Hou Y., Lu Q., Su J., Jin X., Jia C., An L., Tian Y., Song Y. Genome-wide analysis of the HDAC gene family and its functional characterization at low temperatures in tartary buckwheat (Fagopyrum tataricum) // Int. J. Mol. Sci. 2022. V. 23. P. 7622. https://doi.org/10.3390/IJMS23147622
  41. Tyurin A.A., Kabardaeva K.V., Berestovoy M.A., Sidorchuk Y.V., Fomenkov A.A., Nosov A.V., Goldenkova-Pavlova I.V. Simple and reliable system for transient gene expression for the characteristic signal sequences and the estimation of the localization of target protein in plant cell // Russ. J. Plant Physiol. 2017. V. 64. P. 672. https://doi.org/10.1134/S1021443717040173/METRICS
  42. Cheng J., Wen S., Xiao S., Lu B., Ma M., Bie Z. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation // J. Exp. Bot. 2018. V. 69. P. 511. https://doi.org/10.1093/JXB/ERX440
  43. Wang B., Wang G., Shen F., Zhu S. A glycine-rich RNA-binding protein, CsGR-RBP3, is involved in defense responses against cold stress in harvested cucumber (Cucumis sativus L.) fruit // Front. Plant Sci. 2018. V. 9. P. 362717. https://doi.org/10.3389/FPLS.2018.00540/BIBTEX
  44. Wu B., Cao X., Liu H., Zhu C., Klee H., Zhang B., Chen K. UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach // J. Exp. Bot. 2019. V. 70. P. 925. https://doi.org/10.1093/JXB/ERY419
  45. Sasaki N., Takashima E., Nyunoya H. Altered subcellular localization of a tobacco membrane raft-associated remorin protein by tobamovirus infection and transient expression of viral replication and movement proteins // Front. Plant Sci. 2018. V. 9. P. 302384. https://doi.org/10.3389/FPLS.2018.00619
  46. Shoji T. Analysis of the intracellular localization of transiently expressed and fluorescently labeled copper-containing amine oxidases, diamine oxidase and N-methylputrescine oxidase in tobacco, using an agrobacterium infiltration protocol // Methods Mol. Biol. 2018. V. 1694. P. 215. https://doi.org/10.1007/978-1-4939-7398-9_20
  47. Harris N.N., Luczo J.M., Robinson S.P., Walker A.R. Transcriptional regulation of the three grapevine chalcone synthase genes and their role in flavonoid synthesis in Shiraz // Aust. J. Grape Wine Res. 2013. V. 19. P. 221. https://doi.org/10.1111/AJGW.12026
  48. Walker A.R., Lee E., Bogs J., McDavid D.A.J., Thomas M.R., Robinson S.P. White grapes arose through the mutation of two similar and adjacent regulatory genes // Plant J. 2007. V. 49. P. 772. https://doi.org/10.1111/J.1365-313X.2006.02997.X
  49. Czemmel S., Stracke R., Weisshaar B., Cordon N., Harris N.N., Walker A.R., Robinson S.P., Bogs J. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries // Plant Physiol. 2009. V. 151. P. 1513. https://doi.org/10.1104/PP.109.142059
  50. Zhai R., Zhao Y., Wu M., Yang J., Li X., Liu H., Wu T., Liang F., Yang C., Wang Z., Ma F., Xu L. The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit // BMC Plant Biol. 2019. V. 19. P. 1. https://doi.org/10.1186/S12870-019-1687-0/FIGURES/8
  51. Ji X.J., Mao X., Hao Q.T., Liu B.L., Xue J.A., Li R.Z. Splice variants of the castor WRI1 gene upregulate fatty acid and oil biosynthesis when expressed in tobacco leaves // Int. J. Mol. Sci. 2018. V. 19. P. 146. https://doi.org/10.3390/IJMS19010146
  52. Nogueira M., Enfissi E.M.A., Welsch R., Beyer P., Zurbriggen M.D., Fraser P.D. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: a new tool for engineering ketocarotenoids // Metab. Eng. 2019. V. 52. P. 243. https://doi.org/10.1016/J.YMBEN.2018.12.006
  53. Vasav A.P., Godbole R.C., Darshetkar A.M., Pable A.A., Barvkar V.T. Functional genomics-enabled characterization of CYP81B140 and CYP81B141 from Plumbago zeylanica L. substantiates their involvement in plumbagin biosynthesis // Planta. 2022. V. 256. P. 101. https://doi.org/10.1007/S00425-022-04014-X
  54. Liu T.Y., Chou W.C., Chen W.Y., Chu C.Y., Dai C.Y., Wu P.Y. Detection of membrane protein-protein interaction in planta based on dual-intein-coupled tripartite split-GFP association // Plant J. 2018. V. 94. P. 426. https://doi.org/10.1111/TPJ.13874
  55. Kudla J., Bock R. Lighting the way to protein-protein interactions: recommendations on best practices for bimolecular fluorescence complementation analyses // Plant Cell. 2016. V. 28. P. 1002. https://doi.org/10.1105/TPC.16.00043
  56. Kerppola T.K. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells // Annu. Rev. Biophys. 2008. V. 37. P. 465. https://doi.org/10.1146/ANNUREV.BIOPHYS.37.032807.125842
  57. Nam J.C., Bhatt P.S., Kim S.I, Kang H.G. Co-immunoprecipitation for assessing protein-protein interactions in agrobacterium-mediated transient expression system in Nicotiana benthamiana // Methods Mol. Biol. 2023. V. 2690. P. 101. https://doi.org/10.1007/978-1-0716-3327-4_9
  58. Zhang Z., Mao Y., Ha S., Liu W., Botella J.R., Zhu J.K. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis // Plant Cell Rep. 2016. V. 35. P. 1519. https://doi.org/10.1007/S00299-015-1900-Z
  59. Kościańska E., Kalantidis K., Wypijewski K., Sadowski J., Tabler M. Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum // Plant Mol. Biol. 2005. V. 59. P. 647. https://doi.org/10.1007/S11103-005-0668-X
  60. Norkunas K., Harding R., Dale J., Dugdale B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana // Plant Methods. 2018. V. 14. P. 1. https://doi.org/10.1186/S13007-018-0343-2/FIGURES/7
  61. Yamamoto T., Hoshikawa K., Ezura K., Okazawa R., Fujita S., Takaoka M., Mason H.S., Ezura H., Miura K. Improvement of the transient expression system for production of recombinant proteins in plants // Sci. Rep. 2018. V. 8. P. 1. https://doi.org/10.1038/s41598-018-23024-y
  62. Zheng L., Liu G., Meng X., Li Y., Wang Y. A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees // Biochem Genet. 2012. V. 50. P. 761. https://doi.org/10.1007/S10528-012-9518-0
  63. Li J.F., Norville J.E., Aach J., McCormack M., Zhang D., Bush J., Church G.M., Sheen J. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 // Nat. Biotechnol. 2013. V. 31. P. 688. https://doi.org/10.1038/nbt.2654
  64. Osakabe Y., Osakabe K. Genome editing to improve abiotic stress responses in plants // Prog. Mol. Biol. Transl. Sci. 2017. V. 149. P. 99. https://doi.org/10.1016/BS.PMBTS.2017.03.007
  65. Huang X., Jia H., Xu J., Wang Y., Wen J., Wang N. Efficient transgene-free genome editing in plants in the T0 generation based on a co-editing strategy // bioRxiv. 2023. P. 2023. https://doi.org/10.1101/2023.03.02.530790
  66. Vyacheslavova A.O., Mustafaev O.N., Tyrin A.A., Shimshilashvili K.R., Berdichevets I.N., Shayakhmetova D.M., Goldenkov M.A., Fadeev V.S., Sheludko Y.V., Goldenkova-Pavlova I.V. Set of module vectors for stable or transient expression of heterologous genes in plants // Russ. J. Genet. 2012. V. 48. P. 892. https://doi.org/10.1134/S1022795412090098
  67. Matsuo K., Fukuzawa N., Matsumura T. A simple agroinfiltration method for transient gene expression in plant leaf discs // J. Biosci. Bioeng. 2016. V. 122. P. 351. https://doi.org/10.1016/J.JBIOSC.2016.02.001
  68. Naji-Talakar S. Plant-derived biopharmaceuticals: overview and success of agroinfiltration // Trends Capstone. 2017. V. 2. P. 1.
  69. Juranić M., Nagahatenna D.S.K., Salinas-Gamboa R., Hand M.L., Sánchez-León N., Leong W.H., How T., Bazanova N., Spriggs A., Vielle-Calzada J.P., Koltunow A.M.G., Koltunow A.M.G. A detached leaf assay for testing transient gene expression and gene editing in cowpea (Vigna unguiculata [L.] Walp.) // Plant Methods. 2020. V. 16. P. 1. https://doi.org/10.1186/S13007-020-00630-4/FIGURES/5
  70. Vargas-Guevara C., Vargas-Segura C., Villalta-Villalobos J., Pereira L.F.P., Gatica-Arias A. A simple and efficient agroinfiltration method in coffee leaves (Coffea arabica L.): assessment of factors affecting transgene expression // 3 Biotech. 2018. V. 8. P. 471. https://doi.org/10.1007/S13205-018-1495-5
  71. Wang W., Vinocur B., Shoseyov O., Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response // Trends Plant Sci. 2004. V. 9. P. 244. https://doi.org/10.1016/J.TPLANTS.2004.03.006

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Plant systems used for transient expression and their delivery to plant cells: (a) intact plants, isolated organs or specialized plant tissues, the main methods of delivery are agroinfiltration, viral particles, bioballistics; (b) callus, suspension cultures of plant cells, the main methods of delivery are bioballistics; (c) – protoplasts of plant cells, the main delivery methods are electroporation.

下载 (310KB)
3. Fig. 2. Scheme of T-DNA gene constructs for various aspects of studying gene products in a plant cell: (a) – a general scheme of the T-DNA region, including a promoter and terminator (Promoter, Terminator – mandatory components); enhancer (Enhancer, cloned when testing the functional activity of sequences); leader signal (Leader, cloned when studying the localization of the gene product in a plant cell); target gene and/or reporter gene (Goi and/or Reporter – target gene is cloned when studying the functional role of the gene product of the target gene; transcriptional-translational fusion of the target gene with the reporter gene is used in studying the localization of the gene product in a plant cell, as well as in protein-protein interaction studies; the reporter gene is used in testing the functional activity of sequences); (b) – Agrobacteria are transformed by gene constructs, which are used in transient expression to (c) study the locale

下载 (381KB)
4. Fig. 3. Scheme of protein-protein interactions using bimolecular fluorescent complementation analysis (BiFC) and a three–way complementation system: (a, b) - the BiFC system includes two interacting proteins, each of which has a transcriptional-translational fusion with one of the protein domains of the fluorescent protein (a), due to the joint folding of the fluorescent protein in the case of interaction of target proteins, which leads to the restoration of the fluorophore (d). (b, c, e) – the tripartite complementation system includes two GFP fragments, each of which has a transcriptional-translational fusion with one of the studied partner proteins, and an additional system with additional GFP fragments (b), during protein-protein interaction (c) additional GFP fragments interact with GFP fragments that are fused with partner proteins, which leads to the restoration of a full-size GFP that fluoresces (e). The principle of using more

下载 (201KB)
5. Fig. 4. The main directions of research using transient gene expression in plants. The delivery of gene constructs to plant systems using various methodological approaches expands the experimental capabilities of researchers in the field of functional genomics of plants. BBB – protein-protein interaction.

下载 (244KB)

版权所有 © Russian Academy of Sciences, 2024