Метаболизм каллозы в волокнах льна при гравиответе: анализ экспрессии генов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Двигательные реакции растений, относящиеся к тропизмам, обычно осуществляются с использованием механизмов роста растяжением. Однако в данном исследовании изучался гравитропизм на уровне клеток (первичные флоэмные волокна), закончивших свой рост и формирующих утолщенную третичную клеточную стенку. Проведены инвентаризация и анализ экспрессии генов ферментов, ответственных за метаболизм каллозы, на разных стадиях развития флоэмных волокон льна (Linum usitatissimum L.) и при гравиответе. Выявлены гены предполагаемых β-1,3-глюкансинтаз (GSLs) и β-1,3-глюканаз (BGs), имеющие дифференциальный характер экспрессии в исследуемых клетках, среди которых отмечены гены с максимальным уровнем экспрессии на определенной стадии развития. В основном при гравитропизме экспрессия генов β-1,3-глюкансинтаз была понижена, тогда как для генов β-1,3-глюканаз были характерны различные профили экспрессии, среди которых выявлены гены с повышенным уровнем экспрессии только при гравиответе (LusBG1 и LusBG3). Полученные данные позволили предположить наличие активного метаболизма каллозы в клеточной стенке исследуемых волокон на разных стадиях развития и доминирование деградации каллозы в ходе гравиответа. Результаты работы закладывают основу для дальнейших исследований функции каллозы в развитии волокон и реализации двигательной реакции растений.

Full Text

Restricted Access

About the authors

Н. Н. Ибрагимова

Казанский институт биохимии и биофизики – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра “Казанский научный центр Российской академии наук”

Author for correspondence.
Email: nibra@yandex.ru
Russian Federation, Казань

Н. Е. Мокшина

Казанский институт биохимии и биофизики – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра “Казанский научный центр Российской академии наук”

Email: nibra@yandex.ru
Russian Federation, Казань

References

  1. Moulia B., Fournier M. The power and control of gravitropic movements in plants: a biomechanical and systems biology view // J. Exp. Bot. 2009. V. 60. P. 461. https://doi.org/10.1093/jxb/ern341
  2. Gorshkova T., Chernova T., Mokshina N., Ageeva M., Mikshina P. Plant “muscles”: fibers with a tertiary cell wall // New Phytol. 2018. V. 218. P. 66. https://doi.org/10.1111/nph.14997
  3. Almeras T., Derycke M., Jaouen G., Beauchene J., Fournier M. Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits // J. Exp. Bot. 2009. V. 60. P. 4397. https://doi.org/10.1093/jxb/erp276
  4. Kojima M., Becker V.K., Altaner C.M. An unusual form of reaction wood in Koromiko [Hebe salicifolia G. Forst. (Pennell)], a southern hemisphere angiosperm // Planta. 2012. V. 235. P. 289. https://doi.org/10.1007/s00425-011-1503-z
  5. Fisher J.B. Anatomy of axis contraction in seedlings from a fire prone habitat // Am. J. Bot. 2008. V. 95. P. 1337. https://doi.org/10.3732/ajb.0800083
  6. Schreiber N., Gierlinger N., Putz N., Fratz P., Neinhuis C., Burgert I. G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction // Plant J. 2010. V. 61. P. 854. https://doi.org/10.1111/j.1365-313X.2009. 04115.x
  7. Ibragimova N.N., Ageeva M.V., Gorshkova T.A. Development of gravitropic response: unusual behavior of flax phloem G-fibers // Protoplasma. 2017. V. 254. P. 749. https://doi.org/10.1007/s00709-016-0985-8
  8. Waterkeyn L., Caeymaex S., Decamps E. Callose in compression wood tracheids of Pinus and Larix // Bull. Soc. Roy. Bot. Belg. 1982. V. 115. P. 149.
  9. Chen X.-Y., Kim J.-Y. Callose synthesis in higher plants // Plant Signal. Behav. 2009. V. 4. P. 489. https://doi.org/10.4161/psb.4.6.8359
  10. Usak D., Haluška S., Pleskot R. Callose synthesis at the center point of plant development – an evolutionary insight // Plant Physiol. 2023. V. 193. P. 54. https://doi.org/10.1093/plphys/kiad274
  11. Pirselova B., Matusikova I. Callose: the plant cell wall polysaccharide with multiple biological functions // Acta Physiol. Plant. 2013. V. 35. P. 635. https://doi.org/10.1007/s11738-012-1103-y
  12. Richmond T.A., Somerville C.R. The cellulose synthase superfamily // Plant Physiol. 2000. V. 124. P. 495. https://doi.org/10.1104/pp.124.2.495
  13. Verma D.P.S, Hong Z. Plant callose synthase complexes // Plant Mol. Biol. 2001. V. 47. P. 693. https://doi.org/10.1023/A:1013679111111
  14. Lombard V., Ramulu H.G., Drula E., Coutinho P.M., Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013 // Nucleic Acids Res. 2014. V. 42. P. D490. https://doi.org/10.1093/nar/gkt1178
  15. Perrot T., Pauly M., Ramírez V. Emerging roles of β-glucanases in plant development and adaptative responses // Plants. 2022. V. 11. P. 1119. https://doi.org/10.3390/plants11091119
  16. Snegireva A.V., Ageeva M.V., Amenitskii S.I., Chernova T.E., Ebskamp M., Gorshkova T.A. Intrusive growth of sclerenchyma fibers // Russ. J. Plant Physiol. 2010. V. 57. P. 342. https://doi.org/10.1134/S1021443710030052
  17. Gorshkova T., Chernova T., Mokshina N., Gorshkov V., Kozlova L., Gorshkov O. Transcriptome analysis of intrusively growing flax fibers isolated by laser microdissection // Sci. Rep. 2018. V. 8. P. 14570. https://doi.org/10.1038/s41598-018-32869-2
  18. Mokshina N., Gorshkov O., Takasaki H., Onodera H., Sakamoto S., Gorshkova T., Mitsuda N. FIBexDB: a new online transcriptome platform to analyze development of plant cellulosic fibers // New Phytol. 2021. V. 231. P. 512. https://doi.org/10.1111/nph.17405
  19. Cui W., Lee J.-Y. Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress // Nat. Plants. 2016. V. 2. P. 16034. https://doi.org/10.1038/nplants.2016.34
  20. Teea E.E., Johnstona M.G., Papp D., Faulknera C.A. PDLP-NHL3 complex integrates plasmodesmal immune signaling cascades // PNAS. 2023. V. 120. e2216397120. https://doi.org/10.1073/pnas.2216397120
  21. Sevilem I., Miyashima S., Helariutta Y. Cell-to-cell communication via plasmodesmata in vascular plants // Cell Adh. Migr. 2013. V. 7. P. 27. https://doi.org/10.4161/cam.22126
  22. Saatian B., Kohalmi S.E., Cui Y. Localization of Arabidopsis Glucan Synthase-Like 5, 8, and 12 to plasmodesmata and the GSL8-dependent role of PDLP5 in regulating plasmodesmal permeability // Plant Signal. Behav. 2023. V. 18. P. 2164670. https://doi.org/10.1080/15592324.2022.2164670
  23. Xie B., Wang X., Zhu M., Zhang Z., Hong Z. Cals7 encodes a callose synthase responsible for callose deposition in the phloem: a phloemspecific callose synthase // Plant J. 2011. V. 65. P. 1. https://doi.org/10. 1111/j.1365-313X.2010.04399
  24. Gorshkov O., Mokshina N., Ibragimova N., Ageeva M., Gogoleva N., Gorshkova T. Phloem fibres as motors of gravitropic behaviour of flax plants: level of transcriptome // Funct. Plant Biol. 2018. V. 45. P. 203. https://doi.org/10.1071/FP16348
  25. Ellinger D., Naumann M., Falter C., Zwikowics C., Jamrow T., Manisseri C., Somerville S.C., Voigt C.A. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis // Plant Physiol. 2013. V. 161. P. 1433. https://doi.org/10.1104/pp.112.211011
  26. Naumann M., Somerville S., Voigt C. Differences in early callose deposition during adapted and non-adapted powdery mildewinfection of resistant Arabidopsis lines // Plant Signal. Behav. 2013. V. 8. e24408. https://doi.org/10.4161/psb.24408
  27. Enns L.C., Kanaoka M.M., Torii K.U., Comai L., Okada K., Cleland R.E. Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility // Plant Mol. Biol. 2005. V. 58. P. 333. https://doi.org/10.1007/s11103-005-4526-7
  28. Zhou C., Yin Y., Dam P., Xu Y. Identification of novel proteins involved in plant cell-wall synthesis based on protein-protein interaction data // J. Proteome Res. 2010. V. 9. P. 5025. https://doi.org/10.1021/pr100249c
  29. Sakuma Y., Maruyama K., Osakabe Y., Qin F., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression // Plant Cell. 2006. V. 18. P. 1292. https://doi.org/10.1105/tpc.105.035881
  30. Levy A., Erlanger M., Rosenthal M., Epel B.L. A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis // Plant J. 2007. V. 49. P. 669. https://doi.org/10.1111/j.1365-313X.2006.02986.x
  31. Ho L.H., Giraud E., Uggalla V., Lister R., Clifton R., Glen A., Thirkettle-Watts D., Van Aken O., Whelan J. Identification of regulatory pathways controlling gene expression of stress-responsive mitochondrial proteins in Arabidopsis // Plant Physiol. 2008. V. 147. P. 1858. https://doi.org/10.1104/pp.108.121384
  32. Borner G.H., Lilley K.S., Stevens T.J., Dupree P. Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis // Plant Physiol. 2003. V. 132. P. 568. https://doi.org/10.1104/pp.103.021170
  33. Ko J.H., Yang S.H., Park A.H., Lerouxel O., Han K.H. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana // Plant J. 2007. V. 50. P. 1035. https://doi.org/10.1111/j.1365-313X.2007.03109.x
  34. Zavaliev R., Levy A., Gera A., Epel B.L. Subcellular dynamics and role of Arabidopsis β-1,3-glucanases in cell-to-cell movement of tobamoviruses // Mol. Plant Microbe Interact. 2013. V. 26. P. 1016. https://doi.org/10.1094/MPMI-03-13-0062-R

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of sampling (isolated flax fibers) for gene expression assessment. Expression data are uploaded to FIBexDB [18]; iFIBa – intrusively growing fibers, tFIBa – early stage of TCR (tertiary cell wall) formation, tFIBb – late stage of TCR formation; 8, 24, 96 h – time of sample fixation after stem tilting; PUL – pulling side, OPP – opposite to PUL-side. The right side of the table shows the project numbers in NCBI, which published raw data of transcriptome analyses. Normalized data for all transcriptome experiments can be found in FIBexDB (https://ssl.cres-t.org/fibex/flax/).

Download (310KB)
3. Fig. 2. List of β-1,3-glucan synthase genes (PF02364, PF04652) and their expression in flax fibers at different stages of development and during gravistimulation (in TGR) divided into clusters 1–4. Genes, the expression of which was significantly reduced during gravistimulation in flax stem fibers, are shown in blue; genes, the expression of which significantly increased in fibers during gravistimulation compared to the expression in fibers of control plants (tFIBb), are shown in red. * (c) – Differences from control (tFIBb) and (b) – differences with tFIBa are significant at q < 0.05. Genes, the expression of which was not considered, are highlighted in gray. iFIBa – intrusively growing fibers, tFIBa – early stage of TCR (tertiary cell wall) formation. tFIBb – late stage of TCS formation, which served as a control (CTR) in the experiment with gravistimulation. 8, 24, 96 h – time of sample fixation after stem tilting; PUL – pulling side, OPP – opposite to PUL-side. Lus – sequences of flax Linum usitatissimum, At – sequences of Arabidopsis thaliana.

Download (612KB)
4. Fig. 3. Expression of β-1,3-glucan synthase genes (PF02364) in flax stem fibers from clusters 1–4 with a maximum at different stages of development and a decrease in expression during gravioresponse (a), as well as sharply decreasing expression in fibers with a mature cell wall (tFIBb) compared to iFIBa and tFIBa, but activated during gravioresponse (b). * – Differences from the control are significant at q < 0.05. iFIBa – intrusively growing fibers, tFIBa – early stage of TCR (tertiary cell wall) formation. tFIBb – late stage of TCR formation. 8, 24, 96 h – time of sample fixation after stem tilting; PUL – pulling side, OPP – side opposite to PUL. The black dotted line indicates the expression level in the control plants without gravistimulation.

Download (275KB)
5. Fig. 4. Genes of β-1,3-glucan synthase (PF02364), homologous to ATGSL7 (a) and ATGSL2 (b), having a high level of expression in flax fibers at different stages of development, but decreasing expression under gravistimulation. * – Differences with the control are significant at q < 0.05. iFIBa – intrusively growing fibers, tFIBa – early stage of TCR (tertiary cell wall) formation. tFIBb – late stage of TCR formation. 8, 24, 96 h – time of sample fixation after stem bending; PUL – pulling side, OPP – side opposite to PUL. TGR – total gene reads. The black dotted line indicates the expression level in the control plants without gravistimulation.

Download (282KB)
6. Fig. 5. List of genes encoding glycoside hydrolases of family 17 (PF00332) and their expression in flax stem fibers (in TGR). To the left of the heat map are flax genes (and their closest homologs in Arabidopsis thaliana) exhibiting more than a 3-fold change in expression during the gravioresponse (in at least one sample); genes with the highest expression levels only during the gravioresponse are highlighted. * (c) – Differences from the control (tFIBb) and b – differences with tFIBa are significant at q < 0.05. iFIBa – intrusively growing fibers, tFIBa – early stage of TCR (tertiary cell wall) formation. tFIBb – late stage of TCR formation, which served as a control (CTR) in the experiment with gravistimulation. 8, 24, 96 h – time of sample fixation after stem tilting; PUL – pulling side, OPP – opposite PUL side. Lus – sequences of flax Linum usitatissimum, Аt – sequences of Arabidopsis thaliana. BG – β-1,3-glucanase. Samples with maximum gene expression are marked on the right. g – predicted GPI anchor (coefficient 0.173–0.503).

Download (427KB)
7. Fig. 6. Genes of β-1,3-glucanases, the expression of which increased in PUL fibers under gravistimulation compared to OPP. The domain organization of the corresponding protein sequences is shown at the top: SP – signal peptide, GH17 – Glycosyde hydrolase family 17. * – The difference with the control is significant at q < 0.05; t-test – the differences between the samples are significant at P < 0.05. iFIBa – intrusively growing fibers, tFIBa – early stage of TCR (tertiary cell wall) formation, tFIBb – late stage of TCR formation. 8, 24, 96 h – time of sample fixation after stem tilting; PUL – pulling side, OPP – side opposite to PUL. TGR – total gene reads. The black dotted line indicates the expression level in the control plants without gravistimulation.

Download (178KB)
8. Additional materials
Download (307KB)

Copyright (c) 2024 Russian Academy of Sciences