Влияние наночастиц серебра на физиологию высших растений
- Авторлар: Хина А.Г.1,2, Лисичкин Г.В.1, Крутяков Ю.А.1,3
-
Мекемелер:
- Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет им. М.В. Ломоносова”
- Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный технический университет им. Н.Э. Баумана” (национальный исследовательский университет)
- Национальный исследовательский центр “Курчатовский институт”
- Шығарылым: Том 71, № 6 (2024)
- Беттер: 666-696
- Бөлім: ОБЗОРЫ
- URL: https://cardiosomatics.ru/0015-3303/article/view/648251
- DOI: https://doi.org/10.31857/S0015330324060021
- EDN: https://elibrary.ru/MAWELA
- ID: 648251
Дәйексөз келтіру
Аннотация
В обзоре обобщены результаты работ по экспериментальному изучению физиологических процессов, происходящих в организме высших растений при их взаимодействии с высокодисперсным серебром. Показано, что наночастицы серебра способны к интернализации корнями и листьями растений, а затем к перемещению по всему растительному организму по апопластному и симпластическому путям. Попадая в организм растения, наночастицы серебра вызывают каскад внутриклеточных реакций. В зависимости от условий воздействия наночастиц, они могут приводить как к усилению роста растений и активизации в них процессов специфической и неспецифической защиты, так и к негативным последствиям, таким как угнетение развития. Показаны ключевые факторы, определяющие направленность и интенсивность воздействия наночастиц серебра на высшие растения, такие как доза и путь поступления наночастиц, а также их физико-химические параметры, включая размер наночастиц и природу поверхностного стабилизатора. Рассмотрены перспективные направления дальнейших исследований.
Толық мәтін

Авторлар туралы
А. Хина
Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет им. М.В. Ломоносова”; Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный технический университет им. Н.Э. Баумана” (национальный исследовательский университет)
Хат алмасуға жауапты Автор.
Email: alex-khina@inbox.ru
химический факультет, Центр национальной технологической инициативы “Цифровое материаловедение”
Ресей, Москва; МоскваГ. Лисичкин
Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет им. М.В. Ломоносова”
Email: alex-khina@inbox.ru
химический факультет
Ресей, МоскваЮ. Крутяков
Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет им. М.В. Ломоносова”; Национальный исследовательский центр “Курчатовский институт”
Email: alex-khina@inbox.ru
Ресей, Москва; Москва
Әдебиет тізімі
- Malik S., Muhammad K., Waheed Y. Nanotechnology: a revolution in modern industry // Molecules. 2023. V. 28. P. 661. https://doi.org/10.3390/molecules28020661
- Haleem A., Javaid M., Singh R. P., Shanay Rab S. R., Suman R. Applications of nanotechnology in medical field: a brief review // Global Health Journal. 2023. V. 7. P. 70. https://doi.org/10.1016/j.glohj.2023.02.008
- Dawadi S., Katuwal S., Gupta A., Lamichhane U., Thapa R., Jaisi S., Lamichhane G., Bhattarai D.P., Parajuli N. Current research on silver nanoparticles: synthesis, characterization, and applications // J. Nanomater. 2021. P. 1. https://doi.org/10.1155/2021/6687290
- Krutyakov Yu., Kudrinskiy A.A., Olenin A., Lisichkin G. Synthesis and properties of silver nanoparticles: advances and prospects // Russ. Chem. Rev. 2008. V. 77. P. 233. https://doi.org/10.1070RC2008v077n03ABEH003 751
- Bruna T., Maldonado-Bravo F., Jara P., Caro N. Silver nanoparticles and their antibacterial applications // Int. J. Mol. Sci. 2021. V. 22. P. 137202. https://doi.org/10.3390/ijms22137202
- Hamad A., Khashan K.S., Hadi A. Silver nanoparticles and silver ions as potential antibacterial agents // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. P. 4811. https://doi.org/10.1007/s10904-020-01744-x
- Mussin J., Giusiano G. Biogenic silver nanoparticles as antifungal agents // Front. Chem. 2022. V. 10. P. 1023542. https://doi.org/10.3389/fchem.2022.1023542
- Mansoor S., Zahoor I., Baba T.R., Padder S.A., Bhat Z.A., Koul A.M., Jiang L. Fabrication of silver nanoparticles against fungal pathogens // Front. Nanotechnol. 2021. V. 3. P. 679358. https://doi.org/10.3389/fnano.2021.679358
- Ratan Z.A., Mashrur F.R., Chhoan A.P., Shahriar S.M., Haidere M.F., Runa N.J., Kim S., Kweon D.H., Hosseinzadeh H., Cho J.Y. Silver nanoparticles as potential antiviral agents // Pharmaceutics. 2021. V. 13: 2034. https://doi.org/10.3390/pharmaceutics13122034
- Luceri A., Francese R., Lembo D., Ferraris M., Balagna C. Silver nanoparticles: review of antiviral properties, mechanism of action and applications // Microorganisms. 2023. V. 11. https://doi.org/10.3390/microorganisms11030629
- Lansdown A.B.G. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices // Adv. Pharmacol. Pharm. Sci. 2010. V. 2010: 910686. https://doi.org/10.1155/2010/910686
- Souto E.B., Ribeiro A.F., Ferreira M.I., Teixeira M.C., Shimojo A.A.M., Soriano J.L., Naveros B.C., Durazzo A., Lucarini M., Souto S.B., Santini A. New nanotechnologies for the treatment and repair of skin burns infections // Int. J. Mol. Sci. 2020. V. 21: 393. https://doi.org/10.3390/ijms21020393
- Spałek J., Ociepa P., Deptuła P., Piktel E., Daniluk T., Król G., Góźdź S., Bucki R., Okła S. Biocompatible materials in otorhinolaryngology and their antibacterial properties // Int. J. Mol. Sci. 2022. V. 23: 2575. https://doi.org/10.3390/ijms23052575
- Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry // Int. J. Nanomedicine. 2020. V. 15. P. 2555. https://doi.org/10.2147/IJN.S246764
- Waszczykowska A., Żyro D., Ochocki J., Jurowski P. Clinical application and efficacy of silver drug in ophthalmology: a literature review and new formulation of EYE drops with drug silver (I) complex of metronidazole with improved dosage form // Biomedicines. 2021. V. 9: 210. https://doi.org/10.3390/biomedicines9020210
- Gurunathan S., Choi Y.J., Kim J.H. Antibacterial efficacy of silver nanoparticles on endometritis caused by Prevotella melaninogenica and Arcanobacterum pyogenesin dairy cattle // Int. J. Mol. Sci. 2018. V. 19: 1210. https://doi.org/10.3390/ijms19041210
- Fytianos G., Rahdar A., Kyzas G.Z. Nanomaterials in cosmetics: recent updates // Nanomaterials. 2020. V. 10. P. 979. https://doi.org/10.3390/nano10050979
- Deshmukh S.P., Patil S.M., Mullani S.B., Delekar S.D. Silver nanoparticles as an effective disinfectant: a review // Mater. Sci. Eng. C Mater. Biol. Appl. 2019. V. 97. P. 954. https://doi.org/10.1016/j.msec.2018.12.102
- Kraśniewska K., Galus S., Gniewosz M. Biopolymers-based materials containing silver nanoparticles as active packaging for food applications – a review // Int. J. Mol. Sci. 2020. V. 21: 698. https://doi.org/10.3390/ijms21030698
- Krutyakov Y.A., Zherebin P.M., Kudrinskiy A.A., Zubavichus Y.V., Presniakov M., Yapryntsev A.D., Karabtseva A.V., Mikhaylov D.M., Lisichkin G.V. New frontiers in water purification: highly stable amphopolycarboxyglycinate-stabilized Ag–AgCl nanocomposite and its newly discovered potential // J. Phys. D Appl. Phys. 2016. V. 49: 375501. https://doi.org/10.1088/0022-3727/49/37/375501
- Gautam A., Komal P., Gautam P., Sharma A., Kumar N., Jung J.P. Recent trends in noble metal nanoparticles for colorimetric chemical sensing and micro-electronic packaging applications // Metals. 2021. V. 11: 329. https://doi.org/10.3390/met11020329
- Usman M., Farooq M., Wakeel A., Nawaz A., Cheema S.A., Rehman H.U., Ashraf I., Sanaullah M. Nanotechnology in agriculture: current status, challenges and future opportunities // Sci. Total Environ. 2020. V. 721: 137778. https://doi.org/10.1016/j.scitotenv.2020.137778
- Mehmood A. Brief overview of the application of silver nanoparticles to improve growth of crop plants // IET Nanobiotechnol. 2018 V. 12. P. 701. https://doi.org/10.1049/iet-nbt.2017.0273
- Mahajan S., Kadam J., Dhawal P. Barve S., Kakodkar S. Application of silver nanoparticles in in-vitro plant growth and metabolite production: revisiting its scope and feasibility // Plant Cell Tissue Organ Cult. 2022. V. 150. P. 15. https://doi.org/10.1007/s11240-022-02249-w
- Venzhik Y.V., Moshkov, I.E., Dykman L.A. Gold nanoparticles in plant physiology: principal effects and prospects of application // Russ. J. Plant. Physiol. 2021. V. 68. P. 401. https://doi.org/10.1134/S1021443721020205
- Saylor Y., Irby V. Metal nanoparticles: properties, synthesis and applications // Nova Science Publishers, Inc. 2018. 352 p.
- Selivanov N.Y., Selivanova O.G., Sokolov O.I. Sokolova M.K., Sokolov A.O., Bogatyrev V.A., Dykman L.A. Effect of gold and silver nanoparticles on the growth of the Arabidopsis thaliana cell suspension culture // Nanotechnol. Russ. 2017. V. 12. P. 116. https://doi.org/10.1134/S1995078017010104
- Venzhik Y.V., Deryabin A.N. The use of nanomaterials as a plant-protection strategy from adverse temperatures // Russ. J. Plant. Physiol. 2023. V. 70: 68. https://doi.org/10.1134/S1021443723600344
- Venzhik Y.V., Deryabin A.N. Regulation of pro-/antioxidant balance in higher plants by nanoparticles of metals and metal oxides // Russ. J. Plant. Physiol. 2023. V. 70: 14. https://doi.org/10.1134/S1021443722602312
- Venzhik Y., Deryabin A., Popov V., Dykman L., Moshkov I. Priming with gold nanoparticles leads to changes in the photosynthetic apparatus and improves the cold tolerance of wheat // Plant Physiol. Biochem. 2022. V. 190. P. 145. https://doi.org/10.1016/j.plaphy.2022.09.006
- Yang Q., Shan W., Hu L., Zhao Y., Hou Y., Yin Y., Liang Y., Wang F., Cai Y., Liu J., Jiang G. Uptake and transformation of silver nanoparticles and ions by rice plants revealed by dual stable isotope tracing // Environ. Sci. Technol. 2019. V. 53. P. 625. https://doi.org/10.1021/acs.est.8b02471
- Yang J., Cao W., Rui Y. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms // J. Plant Interact. 2017. V. 12. P. 158. https://doi.org/10.1080/17429145.2017.1310944
- Paul A., Roychoudhury A. Go green to protect plants: repurposing the antimicrobial activity of biosynthesized silver nanoparticles to combat phytopathogens // Nanotechnol. Environ. Eng. 2021. V. 6. P. 10. https://doi.org/10.1007/s41204-021-00103-6
- Hernández-Díaz J.A., Garza-García J.J., Zamudio-Ojeda A., León-Morales J.M., López-Velázquez J.C., García-Morales S. Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens // J. Sci. Food Agric. 2021. V. 101. P. 1270. https://doi.org/10.1002/jsfa.10767
- Ansari M., Ahmed S., Khan M.T., Hamad N.A., Ali H.M., Abbasi A., Mubeen I., Intisar A., Hasan M.E., Jasim I.K. Evaluation of in vitro and in vivo antifungal activity of green synthesized silver nanoparticles against early blight in tomato // Horticulturae. 2023. V. 9: 369. https://doi.org/10.3390/horticulturae9030369
- Krutyakov Yu. A., Khina A. G., Mukhina M. T., Shapoval O. A., Lisichkin G. V. Effect of treatment with colloidal silver dispersions stabilized with polyhexamethylene biguanide on the yield and biochemical parameters of potato plants in a field trial // Nanobiotechnology Rep. V. 18. P. 362. https://doi.org/10.1134/S2635167623700246
- Dibrov P., Dzioba J., Gosink K.K., Häse C.C. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae // Antimicrob. Agents Chemother. 2002. V. 46. P. 2668. https://doi.org/10.1128/AAC.46.8.2668-2670.2002
- Yamanaka M., Hara K., Kudo J. // Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis // Appl. Environ. Microbiol. 2005. V. 71. P. 7589. https://doi.org/10.1128/AEM.71.11.7589-7593.2005
- Sadoon A.A., Khadka P., Freeland J., Gundampati R.K., Manso R.H., Ruiz M., Krishnamurthi V.R., Thallapuranam S.K., Chen J., Wang Y. // Silver ions caused faster diffusive dynamics of histone-like nucleoid-structuring proteins in live bacteria // Appl. Environ. Microbiol. 2020. V. 86: e02479-19. https://doi.org/10.1128/AEM.02479-19
- Park H.J., Kim J.Y., Kim J., Lee J.H., Hahn J.S., Gu M.B., Yoon J. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity // Water Res. 2009. V. 43. P. 1027. https://doi.org/10.1016/j.watres.2008.12.002
- Khina A.G., Krutyakov Y.A. Similarities and differences in the mechanism of antibacterial action of silver ions and nanoparticles // Appl. Biochem. Microbiol. 2021. V. 57. P. 683. https://doi.org/10.1134/S0003683821060053
- Krutyakov Y.A., Khina A.G. Bacterial resistance to nanosilver: molecular mechanisms and possible ways to overcome them // Appl. Biochem. Microbiol. 2022. V. 58. P. 493. https://doi.org/10.1134/S0003683822050106
- Siddiqi K. S., Husen, A. Plant response to silver nanoparticles: a critical review // Crit. Rev. Biotechnol. 2022. V. 42. P. 973. https://doi.org/10.1080/07388551.2021.1975091
- El-Temsah Y.S., Joner E.J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil // Environ. Toxicol. 2012. V. 27. P. 42. https://doi.org/10.1002/tox.20610
- Yan A., Chen Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism // Int. J. Mol. Sci. 2019. V. 20: 1003. https://doi.org/10.3390/ijms20051003
- Krutyakov Y.A., Kudrinsky A.A., Gusev A.A., Zakharova O.V., Klimov A.I., Yapryntsev A.D., Zherebin P.M., Shapoval O.A., Lisichkin G.V. Synthesis of positively charged hybrid PHMB-stabilized silver nanoparticles: the search for a new type of active substances used in plant protection products // Mater. Res. Express. 2017. V. 4: 075018. https://doi.org/10.1088/2053-1591/aa7a2e
- Eichert T., Kurtz A., Steiner U., Goldbach H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles // Physiol. Plant. 2008. V. 134. P. 151. https://doi.org/10.1111/j.1399-3054.2008.01135.x
- Eichert T., Goldbach H.E. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces - further evidence for a stomatal pathway // Physiol. Plant. 2008. V. 132. P. 491. https://doi.org/10.1111/j.1399-3054.2007.01023.x
- Hetherington A.M., Woodward F.I. The role of stomata in sensing and driving environmental change // Nature. 2003. V. 424. P. 901. https://doi.org/10.1038/nature01843
- He J., Zhang L., He S.Y., Ryser E.T., Li H., Zhang W. Stomata facilitate foliar sorption of silver nanoparticles by Arabidopsis thaliana // Environ. Pollut. 2022. V. 292: 118448. https://doi.org/10.1016/j.envpol.2021.118448
- Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi // Ecotoxicology. 2008. V. 17. P. 372. https://doi.org/10.1007/s10646-008-0214-0
- Lv J., Christie P., Zhang Sh. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges // Environ. Sci. Nano. 2019. V. 6. P. 41. https://doi.org/10.1039/c8en00645h
- Luu D.T., Maurel C. Aquaporins in a challenging environment: molecular gears for adjusting plant water status // Plant Cell Environ. 2005. V. 28. P. 85. https://doi.org/10.1111/j.1365-3040.2004.01295.x
- Moscatelli A., Ciampolini F., Rodighiero S., Onelli E., Cresti M., Santo N., Idilli A. Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold // J. Cell. Sci. 2007. V. 120. P. 3804. https://doi.org/10.1242/jcs.012138
- Etxeberria E., Gonzalez P., Baroja-Fernandez E., Romero J.P. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments // Plant Signal Behav. 2006. V. 1. P. 196. https://doi.org/10.4161/psb.1.4.3142
- Yang Q., Shan W., Hu L., Zhao Y., Hou Y., Yin Y., Liang Y., Wang F., Cai Y., Liu J., Jiang G. Uptake and transformation of silver nanoparticles and ions by rice plants revealed by dual stable isotope tracing // Environ. Sci. Technol. 2019. V. 53. P. 625. https://10.1021/acs.est.8b02471
- Geisler-Lee J., Wang Q., Yao Y., Zhang W., Geisler M., Li K., Huang Y., Chen Y., Kolmakov A., Ma X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. // Nanotoxicology. 2013. V. 7. P. 323. https://10.3109/17435390.2012.658094
- Ma Y., He X., Zhang P., Zhang Z., Ding Y., Zhang J., Wang G., Xie C., Luo W., Zhang J., Zheng L., Chai Z., Yang K. Xylem and phloem based transport of CeO2 nanoparticles in hydroponic cucumber plants // Environ. Sci. Technol. 2017. V. 51. P. 5215. https://10.1021/acs.est.6b05998
- Zhang W.Y., Wang Q., Li M., Dang F., Zhou D.M. Nonselective uptake of silver and gold nanoparticles by wheat // Nanotoxicology. 2019. V. 13. P. 1073. https://10.1080/17435390.2019.1640909
- Dang F., Wang Q., Cai W., Zhou D., Xing B. Uptake kinetics of silver nanoparticles by plant: relative importance of particles and dissolved ions // Nanotoxicology. 2020. V. 14. P. 654. https://10.1080/17435390.2020.1735550
- Wang J., Koo Y., Alexander A., Yang Y., Westerhof S., Zhang Q., Schnoor J.L., Colvin V.L., Braam J., Alvarez P.J. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag at sublethal concentrations // Environ. Sci. Technol. 2013. V. 47. P. 5442. https://10.1021/es4004334
- Thuesombat P., Hannongbua S., Akasit S., Chadchawan S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth // Ecotoxicol. Environ. Saf. 2014. V. 104. P. 302. https://10.1016/j.ecoenv.2014.03.022
- Cvjetko P., Milošić A., Domijan A.M., Vinković Vrček I., Tolić S., Peharec Štefanić P., Letofsky-Papst I., Tkalec M., Balen B. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots // Ecotoxicol. Environ. Saf. 2017. V. 137. P. 18. https://10.1016/j.ecoenv.2016.11.009
- Zhu Z.J., Wang H., Yan B., Zheng H., Jiang Y., Miranda O.R., Rotello V.M., Xing B., Vachet R.W. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species // Environ. Sci. Technol. 2012. V. 46. P. 12391. https://10.1021/es301977w
- Souza L.R.R., Corrêa T.Z., Bruni A.T., da Veiga M.A.M.S. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor // Environ. Sci. Pollut. Res. 2021. V. 28. P. 16720. https://10.1007/s11356-020-11862-1
- Noori A., Ngo A., Gutierrez P., Theberge S., White J.C. Silver nanoparticle detection and accumulation in tomato (Lycopersicon esculentum) // J. Nanopart. 2020. V. 22. P. 1. https://doi.org/10.1007/s11051-020-04866-y
- Spielman-Sun E., Avellan A., Bland G., Tappero R., Acerbo A., Unrine J., Giraldo J., Lowry G. Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy // Environ. Sci. Nano. 2019. V. 6. P. 2508. https://doi.org/10.1039/C9EN00626E
- Zhu Z.J., Wang H., Yan B., Zheng H., Jiang Y., Miranda O.R., Rotello V.M., Xing B., Vachet R.W. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species // Environ. Sci. Technol. 2012. V. 46. P. 12391. https://doi.org/10.1021/es301977w
- Li M., Dang F., Fu Q., Zhou D., Yin B. Effects of molecular-weight-fractionated natural organic matter on the phytoavailability of silver nanoparticles // Environ. Sci. Nano. 2018. V. 5. P. 969. https://doi.org/10.1039/C7EN01173C
- Wang P., Menzies N.W., Dennis P.G., Guo J., Forstner C., Sekine R., Lombi E., Kappen P., Bertsch P.M., Kopittke P.M. Silver nanoparticles entering soils via the wastewater-sludge-soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability // Environ. Sci. Technol. 2016. V. 50. P. 8274. https://doi.org/10.1021/acs.est.6b01180
- Wang D., Jaisi D.P., Yan J., Jin Y., Zhou D. Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils // Vadose Zone J. 2015. V. 14: vzj2015.01.0007. https://doi.org/10.2136/vzj2015.01.0007
- Santa Cruz J., Vasenev I., Gaete H., Peñaloza P., Krutyakov Yu., Neaman A. Metal ecotoxicity studies with artificially contaminated versus anthropogenically contaminated soils: literature review, methodological pitfalls and research priorities // Russ. J. Ecol. 2021. V. 52. P. 479. https://doi.org/10.1134/S1067413621060126
- Santa-Cruz J., Robinson B., Krutyakov Y.A., Shapoval O.A., Peñaloza P, Yáñez C, Neaman A. An assessment of the feasibility of phytoextraction for the stripping of bioavailable metals from contaminated soils // Environ. Toxicol. Chem. 2023. V. 42. P. 558. https://doi.org/10.1002/etc.5554
- Syu Y.Y., Hung J.H., Chen J.C., Chuang H.W. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression // Plant Physiol. Biochem. 2014. V. 83. P. 57. https://doi.org/10.1016/j.plaphy.2014.07.010
- Evlakov P.M., Fedorova O.A., Grodetskaya T.A., Zakharova O.V., Gusev A.A., Krutyakov Yu.A., Baranov O.Yu. Influence of copper oxide and silver nanoparticles on microclonal sprouts of downy birch (Betula pubescens Ehrh.) // Nanotechnol. Russ. 2020. V. 15. P. 476. https://doi.org/10.1134/S1995078020040035
- Sharma P., Bhatt D., Zaidi M.G., Saradhi P.P., Khanna P.K., Arora S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea // Appl. Biochem. Biotechnol. 2012 V. 167. P. 2225. https://doi.org/10.1007/s12010-012-9759-8
- Pandey C., Khan E., Mishra A., Sardar M., Gupta M. Silver nanoparticles and its effect on seed germination and physiology in Brassica juncea L. (Indian mustard) // Adv. Sci. Lett. 2014. V. 20. P. 1673. https://doi.org/10.1166/asl.2014.5518
- Yadu B., Chandrakar V., Korram J., Satnami M.L., Kumar M., Keshavkant S. Silver nanoparticle modulates gene expressions, glyoxalase system and oxidative stress markers in fluoride stressed Cajanus cajan L. // J. Hazard Mater. 2018. V. 353. P. 44. https://doi.org/10.1016/j.jhazmat.2018.03.061
- Aqeel M., Khalid N., Nazir A., Irshad M.K., Hakami O., Basahi M.A., Alamri S., Hashem M., Noman A. Foliar application of silver nanoparticles mitigated nutritional and biochemical perturbations in chilli pepper fertigated with domestic wastewater // Plant Physiol. Biochem. 2023. V. 194. P. 470. https://doi.org/10.1016/j.plaphy.2022.12.005
- Rezvani N., Sorooshzadeh A., Farhadi N. Effect of nano-silver on growth of saffron in flooding stress // Int. J. Agricult. Biosyst. Eng. 2012. V. 6. P. 519.
- Krutyakov Y.A., Mukhina M.T., Shapoval O.A., Zargar M. Effect of foliar treatment with aqueous dispersions of silver nanoparticles on legume-rhizobium symbiosis and yield of soybean (Glycine max L. Merr.) // Agronomy. 2022. V. 12: 1473. https://doi.org/10.3390/agronomy12061473
- Hojjat S.S. Effect of interaction between Ag nanoparticles and salinity on germination stages of Lathyrus sativus L. // Open Acc. J. Envi. Soi. Sci. 2019. V. 2. P. 193. https://doi.org/10.32474/OAJESS.2019.02.000132
- Prażak R., Święciło A., Krzepiłko A., Michałek S., Arczewska M. Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures // Agriculture. 2020. V. 10: 312. https://doi.org/10.3390/agriculture10080312
- Liang L., Tang H., Deng Z., Liu Y., Chen X., Wang H. Ag nanoparticles inhibit the growth of the bryophyte, Physcomitrella patens // Ecotoxicol. Environ. Saf. 2018. V. 164. P. 739. https://doi.org/10.1016/j.ecoenv.2018.08.021
- Yasur J., Rani P.U. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology // Environ. Sci. Pollut. Res. 2013. V. 20. P. 8636. https://doi.org/10.1007/s11356-013-1798-3
- Zakharova O.V., Gusev A.A., Zherebin P.M. Skripnikova E.V., Skripnikova M.K., Ryzhikh V.E., Lisichkin G.V., Shapoval O.A., Bukovskii M.E., Krutyakov Yu.A. Sodium tallow amphopolycarboxyglycinate-stabilized silver nanoparticles suppress early and late blight of Solanum lycopersicum and stimulate the growth of tomato plants // BioNanoSci. 2017. V. 7. P. 692. https://doi.org/10.1007/s12668-017-0406-2
- Пашкевич Е.Б., Королев П.С., Пряхин Ю.Д., Крутяков Ю.А. Влияние фолиарной обработки дисперсиями стабилизированного коллоидного серебра на урожайность, качество, биохимические показатели картофеля (Solanum tuberosum L.) и численность микроорганизмов в почве // Проблемы агрохимии и экологии. 2020. Т. 1. С. 42. https://doi.org/10.26178/AE.2020.2019.4.013
- Sadak M.S. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum) // Bull. Natl. Res. Cent. 2019. V. 43. https://doi.org/10.1186/s42269-019-0077-y
- Jasim B., Thomas R., Mathew J., Radhakrishnan E.K. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.) // Saudi Pharm. J. 2017. V. 25. P. 443. https://doi.org/10.1016/j.jsps.2016.09.012
- Hojjat S.S., Hojjat H. Effect of nano silver on seed germination and seedling growth in fenugreek seed // Int. J. Food Eng. 2015. V. 1. P. 106. https://doi.org/10.18178/ijfe.1.2.106-110
- Mohamed A.K.S.H., Qayyum M.F., Abdel-Hadi A.M., Rehman R.A., Ali S., Rizwan M. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. // Arch. Agron. Soil Sci. 2017. V. 63. P. 1736. https://doi.org/10.1080/03650340.2017.1300256
- Iqbal M., Raja N.I., Mashwani Z.U.R., Hussain M., Ejaz M., Yasmeen F. Effect of silver nanoparticles on growth of wheat under heat stress // Iran J. Sci. Technol. Trans. Sci. 2019. V. 43. P. 387. https://doi.org/10.1007/s40995-017-0417-4
- Sabir S., Arshad M., Ilyas N., Naz F., Amjad M.S., Malik Z., Khalil S. Protective role of foliar application of green-synthesized silver nanoparticles against wheat stripe rust disease caused by Puccinia striiformis // Green Process. Synth. 2022. V. 11. P. 29. https://doi.org/10.1515/gps-2022-0004
- Mondéjar-López M., López-Jimenez A.J., Ahrazem O., Gómez-Gómez L., Niza E. Chitosan coated – biogenic silver nanoparticles from wheat residues as green antifungal and nanoprimig in wheat seeds // Int. J. Biol. Macromol. 2023. V. 225. P. 964. https://doi.org/10.1016/j.ijbiomac.2022.11.159
- Ke M., Qu Q., Peijnenburg W.J.G.M., Li X., Zhang M., Zhang Z., Lu T., Pan X., Qian H. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways // Sci. Total Environ. 2018. V. 644. P. 1070. https://doi.org/10.1016/j.scitotenv.2018.07.061
- Qian H., Peng X., Han X., Ren J., Sun L., Fu Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana // J. Environ Sci. 2013. V. 25. P. 1947. https://doi.org/10.1016/s1001-0742(12)60301-5
- Sosan A., Svistunenko D., Straltsova D., Tsiurkina K., Smolich I., Lawson T., Subramaniam S., Golovko V., Anderson D., Sokolik A., Colbeck I., Demidchik V. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants // Plant J. 2016. V. 85. P. 245. https://doi.org/10.1111/tpj.13105
- Vishwakarma K., Shweta, Upadhyay N., Singh J., Liu S., Singh V.P., Prasad S.M., Chauhan D.K., Tripathi D.K., Sharma S. Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. // Front Plant Sci. 2017. V. 8: 1501. https://doi.org/10.3389/fpls.2017.01501
- Vinković T., Štolfa-Čamagajevac I., Tkalec M., Goessler W., Domazet Jurašin D., Vinković Vrček I. Does plant growing condition affects biodistribution and biological effects of silver nanoparticles? // Span. J. Agric. Res. 2018. V. 16: e0803. https://doi.org/10.5424/sjar/2018164-13580
- Stampoulis D., Sinha S.K., White J.C. Assay-dependent phytotoxicity of nanoparticles to plants // Environ. Sci. Technol. 2009. V. 43. P. 9479. https://doi.org/10.1021/es901695c
- Oukarroum A., Barhoumi L., Pirastru L., Dewez D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba // Environ Toxicol. Chem. 2013. V. 32. P. 902. https://doi.org/10.1002/etc.2131
- Nair P.M., Chung I.M. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings // Chemosphere. 2014. V. 112. P. 105. https://doi.org/10.1016/j.chemosphere.2014.03.056
- Zuverza-Mena N., Armendariz R., Peralta-Videa J.R., Gardea-Torresdey J.L. Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value // Front. Plant Sci. 2016. V. 7: 90. https://doi.org/10.3389/fpls.2016.00090
- Song U., Jun H., Waldman B., Roh J., Kim Y., Yi J., Lee E.J. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum) // Ecotoxicol. Environ. Saf. 2013. V. 93. P. 60. https://doi.org/10.1016/j.ecoenv.2013.03.033
- Yang J., Jiang F., Ma C., Rui Y., Rui M., Adeel M., Cao W., Xing B. Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study // J. Agric. Food Chem. 2018. V. 66. P. 2589. https://doi.org/10.1021/acs.jafc.7b04904
- Dimkpa C.O., McLean J.E., Martineau N., Britt D.W., Haverkamp R., Anderson A.J. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix // Environ. Sci. Technol. 2013. V. 47. P. 1082. https://doi.org/10.1021/es302973y
- Vannini C., Domingo G., Onelli E., De Mattia F., Bruni I., Marsoni M., Bracale M. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings // J. Plant Physiol. 2014. V. 171. P. 1142. https://doi.org/10.1016/j.jplph.2014.05.002
- Abd-Alla M.H., Nafady N.A., Khalaf D.M. Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule // Agric. Ecosyst. Environ. 2016. V. 218. P. 163. https://doi.org/10.1016/j.agee.2015.11.022
- Nair P.M.G., Chung I.M. Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.) // Acta Physiol. Plant. 2015. V. 37. P. 1. https://doi.org/10.1007/s11738-014-1719-1
- Li C.C., Dang F., Li M., Zhu M., Zhong H., Hintelmann H., Zhou D.M. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice // Nanotoxicology. 2017. V. 11. P. 699. https://doi.org/10.1080/17435390.2017.1344740
- Pokhrel L.R., Dubey B. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles // Sci. Total Environ. 2013. V. 452. P. 321. https://doi.org/10.1016/j.scitotenv.2013.02.059
- Lee W.M., Kwak J.I., An Y.J. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity // Chemosphere. 2012. V. 86. P. 491. https://doi.org/10.1016/j.chemosphere.2011.10.013
- Kaveh R., Li Y.S., Ranjbar S., Tehrani R., Brueck C.L., Van Aken B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions // Environ. Sci. Technol. 2013. V. 47. P. 10637. https://doi.org/10.1021/es402209w
- Vannini C., Domingo G., Onelli E., Prinsi B., Marsoni M., Espen L., Bracale M. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate // PLoS One. 2013. V. 8: e68752. https://doi.org/10.1371/journal.pone.0068752
- Larue C., Castillo-Michel H., Sobanska S., Cécillon L., Bureau S., Barthès V., Ouerdane L., Carrière M., Sarret G. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation // J. Hazard Mater. 2014. V. 264. P. 98. https://doi.org/10.1016/j.jhazmat.2013.10.053
- Al-Huqail A.A., Hatata M.M., Al-Huqail A.A., Ibrahim M.M. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings // Saudi J. Biol. Sci. 2018. V. 25. P. 319. https://doi.org/10.1016/j.sjbs.2017.08.013
- Mirzajani F., Askari H., Hamzelou S., Farzaneh M., Ghassempour A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria // Ecotoxicol. Environ. Saf. 2013. V. 88. P. 48. https://doi.org/10.1016/j.ecoenv.2012.10.018
- Parveen A., Rao S. Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum // J. Clust. Sci. 2015. V. 26. P. 693. https://doi.org/10.1007/s10876-014-0728-y
- Olchowik J., Bzdyk R.M., Studnicki M., Bederska-Błaszczyk M., Urban A., Aleksandrowicz-Trzcińska M. The effect of silver and copper nanoparticles on the condition of english oak (Quercus robur L.) seedlings in a container nursery experiment // Forests. 2017. V. 8: 310. https://doi.org/10.3390/f8090310
- Almutairi Z. Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum L.) during germination // Int. J. Agricult. Biol. 2016. V. 18. P. 449. https://doi.org/10.17957/IJAB/15.0114
- Mansureh G. Effect of silver nanoparticles on seed germination and seedling growth in Thymus vulgaris L. and Thymus daenensis Celak under salinity stress // J. Range. Sci. 2018. V. 8. P. 93.
- Almutairi Z.M., Alharbi A. Effect of silver nanoparticles on seed germination of crop plants // J. Adv. Agricult. 2015. V. 4. P. 280.
- Salama H.M. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.) // Int. Res. J. Biotechnol. 2012. V. 3. P. 190.
- Pallavi M.C., Srivastava R., Arora S., Sharma A.K. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity // 3 Biotech. 2016. V. 6: 254. https://doi.org/10.1007/s13205-016-0567-7
- Yin L., Colman B.P., McGill B.M., Wright J.P., Bernhardt E.S. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants // PLoS One. 2012. V. 7: e47674. https://doi.org/10.1371/journal.pone.0047674
- Landa P. Positive effects of metallic nanoparticles on plants: overview of involved mechanisms // Plant Physiol. Biochem. 2021. V. 161. P. 12. https://doi.org/10.1016/j.plaphy.2021.01.039
- Venzhik Y., Deryabin A., Popov V., Dykman L., Moshkov I. Gold nanoparticles as adaptogens increazing the freezing tolerance of wheat seedlings // Environ. Sci. Pollut. Res. 2022. V. 29. P. 55235. https://doi.org/10.1007/s11356-022-19759-x
- Mittler R., Zandalinas S.I., Fichman Y., Van Breusegem F. Reactive oxygen species signalling in plant stress responses // Nat. Rev. Mol. Cell. Biol. 2022. V. 23. P. 663. https://doi.org/10.1038/s41580-022-00499-2
- Zou L., Wang J., Gao Y., Ren X., Rottenberg M.E., Lu J., Holmgren A. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production // Sci. Rep. 2018. V. 8. P. 11131. https://doi.org/10.1038/s41598-018-29313-w
- Costa C.S., Ronconi J.V., Daufenbach J.F., Gonçalves C.L., Rezin G.T., Streck E.L., Paula M.M. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain // Mol. Cell. Biochem. 2010. V. 342. P. 51. https://doi.org/10.1007/s11010-010-0467-9
- Flores-López L.Z., Espinoza-Gómez H., Somanathan R. Silver nanoparticles: electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review // J. Appl. Toxicol. 2019. V. 39. P. 16. https://doi.org/10.1002/jat.3654
- He W., Zhou Y.T., Wamer W.G., Boudreau M.D., Yin J.J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles // Biomaterials. 2012. V. 33. P. 7547. https://doi.org/10.1016/j.biomaterials.2012.06.076
- Jiang H.S., Qiu X.N., Li G.B., Li W., Yin L.Y. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza // Environ. Toxicol. Chem. 2014. V. 33. P. 1398. https://doi.org/10.1002/etc.2577
- Foyer C., Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context // Plant Cell Environ. 2005. V. 28. P. 1056. https://doi.org/10.1111/j.1365-3040.2005.01327.x
- Waszczak C., Carmody M., Kangasjärvi J. Reactive oxygen species in plant signaling // Annu. Rev. Plant. Biol. 2018. V. 69. P. 209. https://doi.org/10.1146/annurev-arplant-042817-040322
- Desikan R., A-H-Mackerness S., Hancock J.T., Neill S.J. Regulation of the Arabidopsis transcriptome by oxidative stress // Plant. Physiol. 2001. V. 127. P. 159. https://doi.org/10.1104/pp.127.1.159
- Neill S., Desikan R., Hancock J. Hydrogen peroxide signalling // Curr. Opin. Plant Biol. 2002. V. 5. P. 388. https://doi.org/10.1016/s1369-5266(02)00282-0
- Yan J., Tsuichihara N., Etoh T., Iwai S. Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening // Plant Cell Environ. 2007. V. 30. P. 1320. https://doi.org/10.1111/j.1365-3040.2007.01711.x
- Alabdallah N.M., Hasan M.M. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants // Saudi J. Biol. Sci. 2021. V. 28. P. 5631. https://doi.org/10.1016/j.sjbs.2021.05.081
- Hashimoto T., Mustafa G., Nishiuchi T., Komatsu S. Comparative analysis of the effect of inorganic and organic chemicals with silver nanoparticles on soybean under flooding stress // Int. J. Mol. Sci. 2020. V. 21: 1300. https://doi.org/10.3390/ijms21041300
- Lassig R., Gutermuth T., Bey T.D., Konrad K.R., Romeis T. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth // Plant J. 2014. V. 78. P. 94. https://doi.org/10.1111/tpj.12452
- Boisson-Dernier A., Lituiev D.S., Nestorova A., Franck C.M., Thirugnanarajah S., Grossniklaus U. ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases // PLoS Biol. 2013. V. 11: e1001719. https://doi.org/10.1371/journal.pbio.1001719
- Kaya H., Nakajima R., Iwano M., Kanaoka M.M., Kimura S., Takeda S., Kawarazaki T., Senzaki E., Hamamura Y., Higashiyama T., Takayama S., Abe M., Kuchitsu K. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth // Plant Cell. 2014. V. 26. P. 1069. https://doi.org/10.1105/tpc.113.120642
- Foreman J., Demidchik V., Bothwell J.H., Mylona P., Miedema H., Torres M.A., Linstead P., Costa S., Brownlee C., Jones J.D., Davies J.M., Dolan L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth // Nature. 2003. V. 422. P. 442. https://doi.org/10.1038/nature01485
- Glyan’ko A.K. Signaling systems of rhizobia (Rhizobiaceae) and leguminous plants (Fabaceae) upon the formation of a legume-rhizobium symbiosis // Appl. Biochem. Microbiol. 2015. V. 51. P. 494. https://doi.org/10.1134/S0003683815050063
- Lamb C., Dixon R.A. The oxidative burst in plant disease resistance // Annu. Rev. Plant Physiol. Plant. Mol. Biol. 1997. V. 48. P. 251. https://doi.org/10.1146/annurev.arplant.48.1.251
- Zanetti M.E., Terrile M.C., Arce D., Godoy A.V., Segundo B.S., Casalongué C. Isolation and characterization of a potato cDNA corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene differentially activated by stress // J. Exp. Bot. 2002. V. 53. P. 2455. https://doi.org/10.1093/jxb/
- Devlin W.S., Gustine D.L. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction // Plant Physiol. 1992. V. 100. P. 1189. https://doi.org/10.1104/pp.100.3.1189
- Roos G., Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation // Free Radic. Biol. Med. 2011. V. 51. P. 314. https://doi.org/10.1016/j.freeradbiomed.2011.04.031
- Alvarez M.E., Pennell R.I., Meijer P.J., Ishikawa A., Dixon R.A., Lamb C. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity // Cell. 1998. V. 92. P. 773. https://doi.org/10.1016/s0092-8674(00)81405-1
- Mittler R. Oxidative stress, antioxidants and stress tolerance // Trends Plant Sci. 2002. V. 7. P. 405. https://doi.org/10.1016/s1360-1385(02)02312-9
- Nair P.M., Chung I.M. Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana // Environ. Sci. Pollut. Res. 2014. V. 21. P. 8858. https://doi.org/10.1007/s11356-014-2822-y
- Sharma P., Jha A., Dubey R., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions // J. Bot. 2012. V. 2012. P. 217037. https://doi.org/10.1155/2012/217037
- Tkalec M., Peharec Štefanić P., Balen B. Phytotoxicity of silver nanoparticles and defense mechanisms // Compr. Anal. Chem. 2019. V. 84. P. 145. https://doi.org/10.1016/bs.coac.2019.04.010
- Štefanić P.P., Cvjetko P., Biba R., Domijan A.M., Letofsky-Papst I., Tkalec M., Šikić S., Cindrić M., Balen B. Physiological, ultrastructural and proteomic responses of tobacco seedlings exposed to silver nanoparticles and silver nitrate // Chemosphere. 2018. V. 209. P. 640. https://doi.org/10.1016/j.chemosphere.2018.06.128
- Bagherzadeh Homaee M., Ehsanpour A.A. Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro // Hortic. Environ. Biotechnol. 2016. V. 57. P. 544. https://doi.org/10.1007/s13580-016-0083-z
- Richardson A.D., Duigan S.P., Berlyn G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content // New Phytol. 2002. V. 153. P. 185. https://doi.org/10.1046/J.0028-646X.2001.00289.X
- Pardha-Saradhi P., Shabnam N., Sharmila P., Ganguli A.K., Kim H. Differential sensitivity of light-harnessing photosynthetic events in wheat and sunflower to exogenously applied ionic and nanoparticulate silver // Chemosphere. 2018. V. 194. P. 340. https://doi.org/10.1016/j.chemosphere.2017.11.122
- Gondikas A.P., Morris A., Reinsch B.C., Marinakos S.M., Lowry G.V., Hsu-Kim H. Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation // Environ. Sci. Technol. 2012. V. 46. P. 7037. https://doi.org/10.1021/es3001757
- Ferrari E., Barbero F., Busquets-Fité M., Franz-Wachtel M., Köhler H.R., Puntes V., Kemmerling B. Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis seedlings // Nanomaterials. 2021. V. 11. P. 3161. https://doi.org/10.3390/nano11123161
- Kohan-Baghkheirati E., Geisler-Lee J. Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat // Nanomaterials. 2015. V. 5. P. 436. https://doi.org/10.3390/nano5020436
- Lorković Z.J. Role of plant RNA-binding proteins in development, stress response and genome organization // Trends Plant Sci. 2009. V. 14. P. 229. https://doi.org/10.1016/j.tplants.2009.01.007
- Lee K., Kang H. Emerging roles of RNA-binding proteins in plant growth, development, and stress responses // Mol. Cells. 2016. V. 39. P. 179. https://doi.org/10.14348/molcells.2016.2359
- Kaur G., Singh S., Singh H., Chawla M., Dutta T., Kaur H., Bender K., Snedden W.A., Kapoor S., Pareek A., Singh P. Characterization of peptidyl-prolyl cis-trans isomerase- and calmodulin-binding activity of a cytosolic Arabidopsis thaliana cyclophilin AtCyp19-3 // PLoS One. 2015. V. 10: e0136692. https://doi.org/10.1371/journal.pone.0136692
- Mustafa G., Sakata K., Hossain Z., Komatsu S. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress // J. Proteomics. 2015. V. 122. P. 100. https://doi.org/10.1016/j.jprot.2015.03.030
- Mustafa G., Sakata K., Komatsu S. Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress // J. Proteomics. 2016. V. 148. P. 113. https://doi.org/10.1016/j.jprot.2016.07.027
- Hashimoto T., Mustafa G., Nishiuchi T., Komatsu S. Comparative analysis of the effect of inorganic and organic chemicals with silver nanoparticles on soybean under flooding stress // Int. J. Mol. Sci. 2020. V. 21: 1300. https://doi.org/10.3390/ijms21041300
- Pezeshki S.R., DeLaune R.D. Soil oxidation-reduction in wetlands and its impact on plant functioning // Biology. 2012. V. 1. P. 196. https://doi.org/10.3390/biology1020196
- Beyer EM. A potent inhibitor of ethylene action in plants // Plant Physiol. 1976. V. 58. P. 268. https://doi.org/10.1104/pp.58.3.268
- Mohiuddin A., Chowdhury M., Abdullah Z.C., Suhaimi N. Influence of silver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration // Plant Cell Tissue Organ Cult. 1997. V. 51. P. 75. https://doi.org/10.1023/A:1005814514409
- Strader L.C., Beisner E.R., Bartel B. Silver ions increase auxin efflux independently of effects on ethylene response // Plant Cell. 2009. V. 21. P. 3585. https://doi.org/10.1105/tpc.108.065185
- Aleksandrowicz-Trzcińska M., Olchowik J., Studnicki M., Urban A. Do silver nanoparticles stimulate the formation of ectomycorrhizae in seedlings of pedunculate oak (Quercus robur L.)? // Symbiosis. 2019. V. 79. P. 89. https://doi.org/10.1007/s13199-019-00628-0
- Rodríguez F.I., Esch J.J., Hall A.E., Binder B.M., Schaller G.E., Bleecker A.B. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis // Science. 1999. V. 283. P. 996. https://doi.org/10.1126/science.283.5404.996
- Zhao X.C., Qu X., Mathews D.E., Schaller G.E. Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis // Plant Physiol. 2002. V. 130. P. 1983. https://doi.org/10.1104/pp.011635
- McDaniel B.K., Binder B.M. Ethylene receptor 1 (etr1) is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana // J. Biol. Chem. 2012. V. 287. P. 26094. https://doi.org/10.1074/jbc.M112.383034
Қосымша файлдар
