Сфера компетенции генов менделевских кардиомиопатий
- Авторы: Кучер А.Н.1, Назаренко М.С.1
- 
							Учреждения: 
							- Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
 
- Выпуск: Том 60, № 1 (2024)
- Страницы: 42-61
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://cardiosomatics.ru/0016-6758/article/view/667009
- DOI: https://doi.org/10.31857/S0016675824010033
- ID: 667009
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Обзор посвящен анализу сферы компетенции генов менделевских кардиомиопатий (КМП) – гипертрофической, дилатационной, аритмогенной и рестриктивной. По Simple ClinVar патогенные/вероятно патогенные варианты 75 генов приводят к развитию одного или нескольких типов КМП. В то же время для данных генов характерны экспрессия в различных тканях и органах (не только в сердце и сосудах, но и в различных отделах головного мозга, желудочно-кишечного тракта и др.), а также вовлеченность в разнообразные метаболические пути и биологические процессы. Эти данные в целом согласуются с результатами широкогеномных ассоциативных исследований (GWAS). Варианты генов КМП ассоциированы с различными типами КМП и другими заболеваниями сердечно-сосудистой системы, а также оказались информативными в отношении таких патологических состояний как ожирение, различные заболевания костно-мышечной и нервной систем, психические, онкологические, инфекционные заболевания и другие. Помимо патологических состояний полиморфизм генов КМП связан с вариабельностью широкого спектра количественных признаков, в том числе патогенетически значимых для различных многофакторных заболеваний. О неслучайности выявленных ассоциаций генов КМП с многофакторными заболеваниями свидетельствуют: коморбидность КМП с ассоциированными по GWAS заболеваниями или участие последних в качестве симптома, фактора риска развития патологии миокарда, модификатора клинической картины; перекрывание пораженных систем органов и спектра патологий, с которыми ассоциированы частые варианты (по GWAS) и к которым приводят редкие патогенные варианты (по OMIM) генов КМП; подтверждение вовлеченности генов КМП в патогенез патологий других систем органов на молекулярном уровне. Таким образом, представленные в обзоре данные свидетельствуют о широкой сфере компетенции генов первичных КМП, выходящей за рамки сердечно-сосудистой системы, что свидетельствует об актуальности проведения комплексных исследований, направленных на определение причинно-следственных отношений между КМП и патологиями других органов, в том числе и с привлечением молекулярно-генетических данных.
Полный текст
 
												
	                        Об авторах
А. Н. Кучер
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
							Автор, ответственный за переписку.
							Email: maria.nazarenko@medgenetics.ru
				                					                																			                												                	Россия, 							Томск						
М. С. Назаренко
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
														Email: maria.nazarenko@medgenetics.ru
				                					                																			                												                	Россия, 							Томск						
Список литературы
- Landrum M.J., Lee J.M., Benson M. et al. ClinVar: Improving access to variant interpretations and supporting evidence // Nucl. Acids Res. 2018. V. 46. № D1. P. D1062–D1067. https://doi.org/10.1093/nar/gkx1153
- Ding W.W., Wang B.Z., Han L. et al. [ALPK3 gene-related pediatric cardiomyopathy with craniofacial-skeletal features: a report and literature review] [Article in Chinese] // Zhonghua Er Ke Za Zhi = Chinese J. Pediatrics. 2021. V. 59. № 9. P. 787–792. https://doi.org/10.3760/cma.j.cn112140-20210222-00150
- McKenna W.J., Judge D.P. Epidemiology of the inherited cardiomyopathies // Nat. Rev. Cardiol. 2021. V. 18. № 1. P. 22–36. https://doi.org/10.1038/s41569-020-0428-2
- Кучер А.Н., Валиахметов Н.Р., Салахов Р.Р. и др. Фенотипическая вариабельность гипертрофической кардиомиопатии у носителей патогенного варианта p.Arg870His гена MYH7 // Бюлл. Сиб. медицины. 2022. Т. 21. № 3. С. 205–216. https://doi.org/10.20538/1682-0363-2022-3-205-216
- Salakhov R.R., Golubenko M.V., Valiakhmetov N.R.et al. Application of long-read nanopore sequencing to the search for mutations in hypertrophic cardiomyopathy // Int. J. Mol. Sci. 2022. V. 23. № 24. https://doi.org/10.3390/ijms232415845
- Бежанишвили Т.Г., Гудкова А.Я., Давыдова В.Г. и др. Факторы кардиометаболического риска и их связь с полиморфным вариантом rs2228145 гена рецептора интерлейкина-6 у пациентов с гипертрофической кардиомиопатией // Росс. кардиол. журн. 2020. Т. 25. № 10. С. 4098. https://doi.org/10.15829/1560-4071-2020-4098
- Chauhan P.K., Sowdhamini R. Integrative network analysis interweaves the missing links in cardiomyopathy diseasome // Sci. Rep. 2022. V. 12. № 1. P. 19670. https://doi.org/10.1038/s41598-022-24246-x
- Jex N., Chowdhary A., Thirunavukarasu S. et al. Coexistent diabetes is associated with the presence of adverse phenotypic features in patients with hypertrophic cardiomyopathy // Diabetes Care. 2022. V. 45. № 8. P. 1852–1862. https://doi.org/10.2337/dc22-0083
- Lee H.J., Kim H.K., Kim B.S. et al. Impact of diabetes mellitus on the outcomes of subjects with hypertrophic cardiomyopathy: A nationwide cohort study // Diabetes Res. Clin. Pract. 2022. V. 186. https://doi.org/10.1016/j.diabres.2022.109838
- Robertson J., Lindgren M., Schaufelberger M. et al. Body mass index in young women and risk of cardio- myopathy: A long-term follow-up study in Sweden // Circulation. 2020. V. 144. № 7. P. 520–529. https://doi.org/10.1161/CIRCULATIONAHA.119.044056
- Карпуть И.А., Снежицкий В.А., Курбат М.Н. и др. Роль полиморфизмов генов TTN, TTN-truncation, ММР-2, ММР-3 в развитии антрациклин-индуцированной кардиомиопатии // Журн. Гродненского гос. мед. ун-та. 2021. Т. 19. № 2. С. 135–140. https://doi.org/10.25298/2221-8785-2021-19-2-5-135-140
- Макаров И.А., Бородин К.О., Макарова Т.А., Митрофанова Л.Б. Изменение фенотипа кардиомиопатии на фоне миокардита // MEDLINE.RU. Росс. биомед. журн. 2022. Т.23. № 1. С. 298–311
- Povysil G., Chazara O., Carss K.J. et al. Assessing the role of rare genetic variation in patients with heart failure // JAMA Cardiol. 2021. V. 6. № 4. P. 379–386. https://doi.org/10.1001/jamacardio.2020.6500
- Patel A.P., Dron J.S., Wang M. et al. Association of pathogenic DNA variants predisposing to cardio- myopathy with cardiovascular disease outcomes and all-cause mortality // JAMA Cardiol. 2022. V. 7. № 7. P.723–732. https://doi.org/10.1001/ jamacardio.2022.0901
- Tiron C., Campuzano O., Fernández-Falgueras A. et al. Prevalence of pathogenic variants in cardiomyopathy- associated genes in myocarditis // Circ. Genom. Precis. Med. 2022. V. 15. № 3. https://doi.org/10.1161/ CIRCGEN.121.003408
- Walsh R., Offerhaus J.A., Tadros R., Bezzina C.R. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies // Nat. Rev. Cardiol. 2022. V. 19. № 3. P. 151–167. https://doi.org/10.1038/s41569-021-00608-2
- Di Lorenzo F., Marchionni E., Ferradini V. et al. DSP-related cardiomyopathy as a distinct clinical entity? Emerging evidence from an Italian cohort // Int. J. Mol. Sci. 2023. V. 24. № 3. https://doi.org/10.3390/ijms24032490
- Parker L.E., Kramer R.J., Kaplan S., Landstrom A.P. One gene, two modes of inheritance, four diseases: A systematic review of the cardiac manifestation of pathogenic variants in JPH2-encoded junctophilin-2 // Trends Cardiovasc. Med. 2023. V. 33. № 1. P. 1–10. https://doi.org/10.1016/j.tcm.2021.11.006
- Sollis E., Mosaku A., Abid A. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource // Nucl. Acids Res. 2022. V. 51. № D1. P. D977–D985. https://doi.org/10.1093/nar/gkac1010
- Hamosh A., Scott A.F., Amberger J.S. et al. Online Mendelian Inheritance in Man (OMIM), A knowledgebase of human genes and genetic disorders // Nucl. Acids Res. 2005. V. 33 (Database Issue). P. D514‒D517. https://doi.org/10.1093/nar/gki033
- Szklarczyk D., Franceschini A., Wyder S. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life // Nucl. Acids Res. 2015. V. 43(Database Issue). P. D447–D452. https://doi.org/10.1093/nar/gku1003
- McMurry J.A., Köhler S., Washington N.L. et al. Navigating the phenotype frontier: The Monarch Initiative // Genetics. 2016. V. 203. № 4. P. 1491–1495. https://doi.org/10.1534/genetics.116.188870
- Shefchek K.A., Harris N.L., Gargano M. et al. The Monarch Initiative in 2019: An integrative data and analytic platform connecting phenotypes to genotypes across species // Nucl. Acids Res. 2020. V. 48. № D1. P. D704–D715. https://doi.org/10.1093/nar/gkz997
- Zhou Y., Zhou B., Pache L. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets // Nat. Commun. 2019. V. 10. № 1. P. 1523. https://doi.org/10.1038/ s41467-019-09234-6
- Watanabe K., Taskesen E., van Bochoven A., Posthuma D. Functional mapping and annotation of genetic associations with FUMA // Nat. Commun. 2017. V. 8. № 1. P. 1826. https://doi.org/10.1038/s41467-017-01261-5
- Kim C.Y., Baek S., Cha J. et al. HumanNet v3: An improved database of human gene networks for disease research // Nucl. Acids Res. 2022. V. 50. № D1. P. D632–D639. https://doi.org/10.1093/nar/gkab1048
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) project // Nat. Genet. 2013. V. 45. № 6. P. 580–585. https://doi.org/10.1038/ng.2653
- Han P., Li W., Yang J. et al. Epigenetic response to environmental stress: Assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts // Biochim. Biophys. Acta. 2016. V. 1863. № 7 Pt B. P. 1772–1781. https://doi.org/10.1016/j.bbamcr.2016.03.002
- Forini F., Nicolini G., Kusmic C. et al. T3 critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: role of an epigenetic cross-talk // Cells. 2020. V. 9. № 10. https://doi.org/10.3390/cells9102155
- Li X., Lin G., Liu T. et al. Postnatal development of BAG3 expression in mouse cerebral cortex and hippocampus // Brain Struct. Funct. 2021. V. 226. № 8. P. 2629–2650. https://doi.org/10.1007/s00429-021-02356-y
- UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023 // Nucl. Acids Res. 2023. V. 51. № D1. P. D523–D531. https://doi.org/10.1093/nar/gkac1052
- Jomova K., Makova M., Alomar S.Y. et al. Essential metals in health and disease // Chem. Biol. Interact. 2022. V. 367. https://doi.org/10.1016/j.cbi.2022.110173
- Zhang Y., He J., Jin J., Ren C. Recent advances in the application of metallomics in diagnosis and prognosis of human cancer // Metallomics. 2022. V. 14. № 7. https://doi.org/10.1093/mtomcs/mfac037
- Zhang Y., Huang B., Jin J. et al. Recent advances in the application of ionomics in metabolic diseases // Front. Nutr. 2023. V. 9. https://doi.org/10.3389/fnut.2022.1111933
- Brownrigg J.R., Leo V., Rose J. et al. Epidemiology of cardiomyopathies and incident heart failure in a population-based cohort study // Heart. 2022. V. 108. № 17. P. 1383–1391. https://doi.org/10.1136/heartjnl-2021-320181
- Surget E., Maltret A., Raimondi F. et al. Clinical presentation and heart failure in children with arrhythmogenic cardiomyopathy // Circ. Arrhythm. Electrophysiol. 2022. V. 15. № 2. https://doi.org/10.1161/CIRCEP.121.010346
- Buckley B.J.R., Harrison S.L., Gupta D. et al. Atrial fibrillation in patients with cardiomyopathy: Prevalence and clinical outcomes from real-world data // J. Am. Heart Assoc. 2021. V. 10. № 23. https://doi.org/10.1161/JAHA.121.021970
- Cipriani A., Perazzolo Marra M., Bariani R. et al. Differential diagnosis of arrhythmogenic cardiomyopathy: Phenocopies versus disease variants // Minerva Med. 2021. V. 112. № 2. P. 269–280. https://doi.org/10.23736/S0026-4806.20.06782-8
- Yoneda Z.T., Anderson K.C., Quintana J.A. et al. Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes // JAMA Cardiol. 2021. V. 6. № 12. P. 1371–1379. https://doi.org/10.1001/jamacardio.2021.3370
- Shah R.A., Asatryan B., Sharaf Dabbagh G. et al. Frequency, Penetrance, and variable expressivity of dilated cardiomyopathy-associated putative pathogenic gene variants in UK Biobank Participants // Circulation. 2022. V. 146. № 2. P. 110–124. https://doi.org/10.1161/CIRCULATIONAHA.121.058143
- Osteraas N.D., Lee V.H. Chapter 4 – Neurocardiology // Handbook of Clinical Neurology. Elsevier, 2017. P. 49–65. https://doi.org/10.1016/B978-0-444-63600-3.00004-0
- Gopinath R., Ayya S.S. Neurogenic stress cardiomyopathy: What do we need to know // Ann. Card. Anaesth. 2018. V. 21. № 3. P. 228–234. https://doi.org/10.4103/aca.ACA_176_17
- Ripoll J.G., Blackshear J.L., Díaz-Gómez J.L. Acute cardiac complications in critical brain disease // Neurosurg. Clin. N. Am. 2018. V. 29. № 2. P. 281–297. https://doi.org/10.1016/j.nec.2017.11.007
- Ganassi M., Zammit P.S. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: Expanding the portfolio of satellite cell-opathies // Eur. J. Transl. Myol. 2022. V. 32. № 1. https://doi.org/10.4081/ejtm.2022.10064
- Shi K., Huang S., Li X. et al. Effect of obesity on left ventricular remodeling and clinical outcome in chinese patients with hypertrophic cardiomyopathy: Assessed by cardiac MRI // J. Magn. Reson. Imaging. 2023. V. 57. № 3. P. 800–809. https://doi.org/10.1002/jmri.28306
- Nollet E.E., Westenbrink B.D., de Boer R.A. et al. Unraveling the genotype–phenotype relationship in hypertrophic cardiomyopathy: Obesity-related cardiac defects as a major disease modifier // J. Am. Heart. Assoc. 2020. V. 9. № 22 https://doi.org/10.1161/JAHA.120.018641
- Chen B., Tang W.H.W., Rodriguez M. et al. NAFLD in cardiovascular diseases: A contributor or comorbidity? // Semin. Liver Dis. 2022. V. 42. № 4. P. 465–474. https://doi.org/10.1055/s-0042-1757712
- Chang W.H., Mueller S.H., Chung S.C. et al. Increased burden of cardiovascular disease in people with liver disease: Unequal geographical variations, risk factors and excess years of life lost // J. Transl. Med. 2022. V. 20. № 1. P. 2. https://doi.org/10.1186/s12967-021-03210-9
- Liu S., Yan Z., Liu Q. The Burden of psoriasis in China and global level from 1990 to 2019: A systematic analysis from the global burden of disease study 2019 // Biomed. Res. Int. 2022. V. 2022. https://doi.org/10.1155/2022/3461765
- Gupta A., Madke B. Psoriasis a cause of cardiovascular diseases: A review article // Cureus. 2022. V. 14. № 8. https://doi.org/10.7759/cureus.27767
- Filardi T., Ghinassi B., Di Baldassarre A. et al. Cardiomyopathy associated with diabetes: The central role of the cardiomyocyte // Int. J. Mol. Sci. 2019. V. 20. № 13. P. 3299. https://doi.org/10.3390/ijms20133299
- Sanganalmath S.K., Dubey S., Veeranki S. et al. The interplay of inflammation, exosomes and Ca2+ dynamics in diabetic cardiomyopathy // Cardiovasc. Diabetol. 2023. V. 22. № 1. P. 37. https://doi.org/10.1186/s12933-023-01755-1
- Zaffran S., Kraoua L., Jaouadi H. Calcium handling in inherited cardiac diseases: A focus on catecholaminergic polymorphic ventricular tachycardia and hypertrophic cardiomyopathy // Int. J. Mol. Sci. 2023. V. 24. № 4. https://doi.org/10.3390/ijms24043365
- Волков В. К вопросу о сроке развития нейролептической кардиомиопатии // Врач. 2019. Т. 30. № 9. С. 31–34. https://doi.org/10.29296/25877305-2019-09-05
- Osterlund P., Kinos S., Pfeiffer P. et al. Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours: A multicentre retrospective observational cohort study // ESMO Open. 2022. V. 7. № 3. P. 100427. https://doi.org/10.1016/j.esmoop.2022.100427
- Thomas S.D., Jha N.K., Jha S.K. et al. Pharmacological and molecular insight on the cardioprotective role of apigenin // Nutrients. 2023. V. 15. № 2. P. 385. https://doi.org/10.3390/nu15020385
- Li M.Y., Peng L.M., Chen X.P. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future // Front. Cardiovasc. Med. 2022. V. 9. https://doi.org/10.3389/fcvm.2022.966261
- Harding D., Chong M.H.A., Lahoti N. et al. Dilated cardiomyopathy and chronic cardiac inflammation: Pathogenesis, diagnosis and therapy // J. Intern. Med. 2023. V. 293. № 1. P. 23–47. https://doi.org/10.1111/joim.13556
- Poller W., Kühl U., Tschoepe C. et al. Genome-environment interactions in the molecular pathogenesis of dilated cardiomyopathy // J. Mol. Med. (Berl). 2005. V. 83. № 8. P. 579–586. https://doi.org/10.1007/s00109-005-0664-2
- Kažukauskienė I., Baltrūnienė V., Jakubauskas A. et al. Prevalence and prognostic relevance of myocardial inflammation and cardiotropic viruses in non-ischemic dilated cardiomyopathy // Cardiol. J. 2022. V. 29. № 3. P. 441–453. https://doi.org/10.5603/CJ.a2020.0088
- Welty F.K., Rajai N., Amangurbanova M. Comprehensive review of cardiovascular complications of coronavirus disease 2019 and beneficial treatments // Cardiol. Rev. 2022. V. 30. № 3. P. 145–157. https://doi.org/10.1097/CRD.0000000000000422
- Akhtar Z., Trent M., Moa A. et al. The impact of COVID-19 and COVID vaccination on cardiovascular outcomes // Eur. Heart J. Suppl. 2023. V. 25. № Suppl. A. P. A42–A49. https://doi.org/10.1093/eurheartjsupp/suac123
- Goyal M., Ray I., Mascarenhas D. et al. Myocarditis post-SARS-CoV-2 vaccination: A systematic review // QJM: An Intern. J. Medicine. 2023. V. 116. № 1. P. 7–25. https://doi.org/10.1093/qjmed/hcac064
- Hammersley D.J., Buchan R.J., Lota A.S. et al. Direct and indirect effect of the COVID-19 pandemic on patients with cardiomyopathy // Open Heart. 2022. V. 9. № 1. https://doi.org/10.1136/openhrt-2021-001918
- Hill E., Mehta H., Sharma S. et al. Risk factors associated with post-acute sequelae of SARS-CoV-2 in an EHR cohort: A National COVID Cohort Collaborative (N3C) analysis as part of the NIH RECOVER program [Preprint] // medRxiv. 2022. https://doi.org/10.1101/2022.08.15.22278603
- Lu J.F., Fan Z.X., Li Y. et al. Risk factors, clinical features, and outcomes of patients with hypertrophic cardiomyopathy complicated by ischemic stroke: A single-center retrospective study // Front. Cardiovasc. Med. 2022. V. 9. https://doi.org/10.3389/fcvm.2022.1054199
- Gyftopoulos A., Chen Y.J., Wang L. et al. Identification of Novel Genetic Variants and Comorbidities Associated With ICD-10-based diagnosis of hypertrophic cardiomyopathy using the UK Biobank Cohort // Front. Genet. 2022. V. 13. https://doi.org/10.3389/fgene.2022.866042
- Pogran E., Abd El-Razek A., Gargiulo L. et al. Long-term outcome in patients with takotsubo syndrome: A single center study from Vienna // Wien Klin. Wochenschr. 2022. V. 134. № 7–8. P. 261–268. https://doi.org/10.1007/s00508-021-01925-9
- Palasca O., Santos A., Stolte C. et al. TISSUES 2.0: An integrative web resource on mammalian tissue expression // Database (Oxford). 2018. V. 2018. № 7. https://doi.org/10.1093/database/bay003
- Zheng Q.X., Wang J., Gu X.Y. et al. TTN-AS1 as a potential diagnostic and prognostic biomarker for multiple cancers // Biomed. Pharmacother. 2012. V. 135. https://doi.org/10.1016/j.biopha.2020.111169
- Biswas A., Nath S.D., Ahsan T. et al. TTN as a candidate gene for distal arthrogryposis type 10 pathogenesis // J. Genet. Eng. Biotechnol. 2022. V. 20. № 1. P. 119. https://doi.org/10.1186/s43141-022-00405-5
- Rai B., Naylor P., Sanchez M.S. et al. Novel effects of Ras-MAPK pathogenic variants on the developing human brain and their link to gene expression and inhibition abilities [Preprint] // Res. Sq. 2023. https://doi.org/10.21203/rs.3.rs-2580911/v1
- Gao J., Liu H., Wang X. et al. Associative analysis of multi-omics data indicates that acetylation modification is widely involved in cigarette smoke-induced chronic obstructive pulmonary disease // Front. Med (Lausanne). 2023. V. 9. https://doi.org/10.3389/fmed.2022.1030644
- Chen J., Wen Y., Su H. et al. Deciphering prognostic value of TTN and its correlation with immune infiltration in lung adenocarcinoma // Front. Oncol. 2022. V. 12. https://doi.org/10.3389/fonc.2022.877878
- Xie S., Wang X. CRYAB reduces cigarette smoke-induced inflammation, apoptosis, and oxidative stress by retarding PI3K/Akt and NF-κB signaling pathways in human bronchial epithelial cells // Allergol. Immunopathol. (Madr.). 2022. V. 50. № 5. P. 23–29. https://doi.org/10.15586/aei.v50i5.645
- Becerra-Hernández L.V., Escobar-Betancourt M.I., Pimienta-Jiménez H.J., Buriticá E. Crystallin alpha-B overexpression as a possible marker of reactive astrogliosis in human cerebral contusions // Front. Cell Neurosci. 2022. V. 16. https://doi.org/10.3389/fncel.2022.838551
- Parnell L.D., Magadmi R., Zwanger S. et al. Dietary responses of dementia-related genes encoding metabolic enzymes // Nutrients. 2023. V. 15. № 3. https://doi.org/10.3390/nu15030644
- Yao L., Lin K., Zheng Z. et al. Bioinformatic analysis of genetic factors from human blood samples and postmortem brains in Parkinson’s disease // Oxid. Med. Cell Longev. 2022. https://doi.org/10.1155/2022/9235358
- Liang L., Yan J., Huang X. et al. Identification of molecular signatures associated with sleep disorder and Alzheimer’s disease // Front. Psychiatry. 2022. V. 13. https://doi.org/10.3389/fpsyt.2022.925012
- Rahman M.R., Islam T., Zaman T. et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights from a systems biomedicine perspective // Genomics. 2020. V. 112. № 2. P. 1290–1299. https://doi.org/10.1016/j.ygeno.2019.07.018
- Giannos P., Prokopidis K., Raleigh S.M. et al. Altered mitochondrial microenvironment at the spotlight of musculoskeletal aging and Alzheimer’s disease // Sci. Rep. 2022. V. 12. № 1. P. 11290. https://doi.org/10.1038/s41598-022-15578-9
- Zheng H., Qian X., Tian W., Cao L. Exploration of the common gene characteristics and molecular mechanism of Parkinson’s disease and Crohn’s disease from transcriptome data // Brain Sci. 2022. V. 12. № 6. P. 774. https://doi.org/10.3390/brainsci12060774
- Chen S., Chen L., Jiang H. Integrated bioinformatics and clinical correlation analysis of key genes, pathways, and potential therapeutic agents related to diabetic nephropathy // Dis. Markers. 2022. V. 2022. https://doi.org/10.1155/2022/9204201
- Diao M., Wu Y., Yang J. et al. Identification of novel key molecular signatures in the pathogenesis of experimental diabetic kidney disease // Front. Endocrinol. (Lausanne). 2022. V. 13. https://doi.org/10.3389/fendo.2022.843721
- Wu C., Tan S., Liu L. et al. Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis // Arthritis Res. Ther. 2022. V. 23. P. 38. https://doi.org/10.1186/s13075-021-02419-9
- Carruthers N.J., Strieder-Barboza C., Caruso J.A. et al. The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity // Sci. Rep. 2021. V. 11. № 1. P. 17394. https://doi.org/10.1038/s41598-021-96995-0
- Gou W., Wei H., Swaby L. et al. Deletion of spinophilin promotes white adipocyte browning // Pharmaceuticals (Basel). 2023. V. 16. № 1. P. 91. https://doi.org/10.3390/ph16010091
- Xiao M., Zhang Y., Xu X. Calorie restriction combined with high-intensity interval training promotes browning of white adipose tissue by activating the PPARγ/PGC-1α/UCP1 pathway // Altern. Ther. Health Med. 2023. V. 29. № 3. P. 134–139.
- Zhang Y., Qi J., Zhao J. et al. Effect of dietetic obesity on testicular transcriptome in Cynomolgus Monkeys // Genes (Basel). 2023. V. 14. № 3. https://doi.org/10.3390/genes14030557
- Mishra B.K., Madhu S.V., Aslam M. et al. Adipose tissue expression of UCP1 and PRDM16 genes and their association with postprandial triglyceride metabolism and glucose intolerance // Diabetes Res. Clin. Pract. 2021. V. 182. https://doi.org/10.1016/j.diabres.2021.109115
- Li X., Lu Y., Zhang L., Song A. et al. Primary and secondary hyperparathyroidism present different expressions of calcium-sensing receptor // BMC Surg. 2023. V. 23. № 1. P. 31. https://doi.org/10.1186/s12893-023-01928-5
- Li R., Zhang J., Wang Q. et al. TPM1 mediates inflammation downstream of TREM2 via the PKA/CREB signaling pathway // J. Neuroinflammation. 2022. V. 19. № 1. P. 257. https://doi.org/10.1186/s12974-022-02619-3
- He X., Wang T., Ran N. et al. MicroRNA-21-5p regulates CD3+T lymphocytes through VCL and LTF in patients with immune thrombocytopenia // Clin. Lab. 2022. V. 68. № 7. https://doi.org/10.7754/Clin.Lab.2021.210907
- Wang R., Xiao Y., Pan M. et al. Integrative analysis of bulk RNA-Seq and Single-Cell RNA-Seq unveils the characteristics of the immune microenvironment and prognosis signature in prostate cancer // J. Oncol. 2022. https://doi.org/10.1155/2022/6768139
- Yu N., Zhang J., Phillips S.T. et al. Impaired func- tion of epithelial plakophilin-2 is associated with periodontal disease // J. Periodontal. Res. 2021. V. 56. № 6. P. 1046–1057. https://doi.org/10.1111/jre.12918
- Wang M., Li J., Yin Y. et al. Network phar- macology and in vivo experiment-based strategy to investigate mechanisms of JingFangFuZiLiZhong formula for ulcerative colitis // Ann. Med. 2022. V. 54. № 1. P. 3219–3233. https://doi.org/10.1080/07853890.2022.2095665
- Iacucci M., Jeffery L., Acharjee A. et al. Computer-aided imaging analysis of probe-based confocal laser endomicroscopy with molecular labeling and gene expression identifies markers of response to biological therapy in IBD patients: The Endo-Omics Study // Inflamm. Bowel Dis. 2022. https://doi.org/10.1093/ibd/izac233
- Цыгвинцев А.А., Лищук А.А., Сторожилов В.А., Иванов Д.В. (2019) Обратимая дилятация полостей сердца как маркер новых возможностей в терапии воспалительной и дилятационной кардиомиопатии // Вестник новых мед. технологий. 2019.Т. 26. № 4. С. 29–34. https://doi.org/10.24411/1609-2163-2019-16526
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 



