Изменение продолжительности жизни как интегральный ответ на иммунный статус организма и активность мобильных элементов
- Авторы: Тростников М.В.1,2, Малышев Д.Р.1, Пасюкова Е.Г.1
- 
							Учреждения: 
							- Национальный исследовательский центр “Курчатовский институт”
- Сколковский институт науки и технологий
 
- Выпуск: Том 59, № 11 (2023)
- Страницы: 1212-1218
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://cardiosomatics.ru/0016-6758/article/view/667037
- DOI: https://doi.org/10.31857/S0016675823110140
- EDN: https://elibrary.ru/NDJCID
- ID: 667037
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Одной из ключевых задач при изучении молекулярно-генетических основ многих патологий является поиск триггеров, влияние на которые могло бы положительно сказаться на частоте возникновения зависимых от возраста заболеваний и в целом темпах старения. Возможной причиной зависимой от возраста деградации функций организма, индуцирующей старение, является иммуносенесцентность. Известно, что наблюдаемое с возрастом повышение активности мобильных элементов может не только влиять на уровень стабильности генома, но и играть ключевую роль в формировании иммунного ответа. В то же время давно доказана ключевая роль нервной системы в контроле продолжительности жизни, а недавно показано, что компоненты аппарата, регулирующего активность мобильных элементов, функционируют в нервной системе, и их работа влияет на развитие нейродегенеративных заболеваний. В мини-обзоре представлены факты, указывающие на комплексную регуляцию старения со стороны нервной и иммунной систем при участии систем контроля активности мобильных элементов и предложена гипотетическая схема их совместного влияния на продолжительность жизни.
Ключевые слова
Об авторах
М. В. Тростников
Национальный исследовательский центр “Курчатовский институт”; Сколковский институт науки и технологий
							Автор, ответственный за переписку.
							Email: mikhail.trostnikov@gmail.com
				                					                																			                												                								Россия, 123182, Москва; Россия, 121205, Московская область, Сколково						
Д. Р. Малышев
Национальный исследовательский центр “Курчатовский институт”
														Email: mikhail.trostnikov@gmail.com
				                					                																			                												                								Россия, 123182, Москва						
Е. Г. Пасюкова
Национальный исследовательский центр “Курчатовский институт”
														Email: mikhail.trostnikov@gmail.com
				                					                																			                												                								Россия, 123182, Москва						
Список литературы
- Kirkwood T.B.L. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’ // Philos. Trans. Royal Soc. B Biol. Sci. 2015. V. 370. № 1666. P. 20140379. https://doi.org/10.1098/rstb.2014.0379
- Liochev S.I. Which is the most significant cause of aging? // Antioxidants (Basel). 2015. V. 4. № 4. P. 793–810. https://doi.org/10.3390/antiox4040793
- López-Otín C., Blasco M.A., Partridge L. et al. Hallmarks of aging: an expanding universe // Cell. 2023. V. 186. № 2. P. 243–278. https://doi.org/10.1016/j.cell.2022.11.001
- Guo J., Huang X., Dou L. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments: 1 // Sig. Transduct. Target Ther. 2022. V. 7. № 1. P. 1–40. https://doi.org/10.1038/s41392-022-01251-0
- Yu M., Zhang H., Wang B. et al. Key signaling pathways in aging and potential interventions for healthy aging: 3 // Cells Multidisciplinary Digital Publ. Inst. 2021. V. 10. № 3. P. 660. https://doi.org/10.3390/cells10030660
- Mogilenko D.A., Shchukina I., Artyomov M.N. Immune ageing at single-cell resolution: 8 // Nat. Rev. Immunol. 2022. V. 22. № 8. P. 484–498. https://doi.org/10.1038/s41577-021-00646-4
- Gan T., Fan L., Zhao L. et al. JNK signaling in Drosophila aging and longevity: 17 // Int. J. Mol. Sci. 2021. V. 22. № 17. P. 9649. https://doi.org/10.3390/ijms22179649
- Hayat R., Manzoor M., Hussain A. Wnt signaling pathway: A comprehensive review // Cell Biol. International. 2022. V. 46. № 6. P. 863–877. https://doi.org/10.1002/cbin.11797
- Fabian D.K., Fuentealba M., Dönertaş H.M. et al. Functional conservation in genes and pathways linking ageing and immunity // Immunity & Ageing. 2021. V. 18. № 1. P. 23. https://doi.org/10.1186/s12979-021-00232-1
- Fabian D.K., Garschall K., Klepsatel P. et al. Evolution of longevity improves immunity in Drosophila // Evol. Letters. 2018. V. 2. № 6. P. 567–579. https://doi.org/10.1002/evl3.89
- Mafi S., Mansoori B., Taeb S. et al. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment // Front. in Immunology. 2022. V. 12. https://doi.org/10.3389/fimmu.2021.774103
- Kircheis R., Planz O. The role of Toll-like receptors (TLRs) and their related signaling pathways in viral infection and inflammation // Int. J. Mol. Sci. 2023. V. 24. № 7. https://doi.org/10.3390/ijms24076701
- Haseeb M., Pirzada R.H., Ain Q.U. et al. Wnt signaling in the regulation of immune cell and cancer therapeutics // Cells. 2019. V. 8. № 11. https://doi.org/10.3390/cells8111380
- Duan T., Du Y., Xing C. et al. Toll-like receptor signaling and its role in cell-mediated immunity // Front. Immunology. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.812774
- Lemaitre B., Nicolas E., Michaut L. et al. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults // Cell. 1996. V. 86. № 6. P. 973–983. https://doi.org/10.1016/s0092-8674(00)80172-5
- Medzhitov R., Preston-Hurlburt P., Janeway C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity // Nature. 1997. V. 388. № 6640. P. 394–397. https://doi.org/10.1038/41131
- Salminen A., Kaarniranta K., Kauppinen A. Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: Impact on the aging process and age-related diseases // Inflamm. Res. 2021. V. 70. № 10–12. P. 1043–1061. https://doi.org/10.1007/s00011-021-01498-3
- Kubiak M., Tinsley M.C. Sex-specific routes to immune senescence in Drosophila melanogaster: 1 // Sci. Rep. 2017. V. 7. № 1. P. 10417. https://doi.org/10.1038/s41598-017-11021-6
- Yu S., Luo F., Xu Y. et al. Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues // Front. Immunology. 2022. V. 13
- Nüsslein-Volhard C. The Toll gene in Drosophila pattern formation // Trends in Genet. Elsevier. 2022. V. 38. № 3. P. 231–245. https://doi.org/10.1016/j.tig.2021.09.006
- Boulet M., Renaud Y., Lapraz F. et al. Characterization of the Drosophila adult hematopoietic system reveals a rare cell population with differentiation and proliferation potential // Frontiers in Cell and Developmental Biology. 2021. V. 9.
- Sanchez Bosch P., Makhijani K., Herboso L. et al. Adult Drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues // Dev. Cell. 2019. V. 51. № 6. P. 787–803.e5. https://doi.org/10.1016/j.devcel.2019.10.017
- Ventura M.T., Casciaro M., Gangemi S. et al. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation // Clin. Mol. Allergy. 2017. V. 15. https://doi.org/10.1186/s12948-017-0077-0
- Sadighi Akha A.A. Aging and the immune system: An overview // J. Immunol. Meth. 2018. V. 463. P. 21–26. https://doi.org/10.1016/j.jim.2018.08.00
- Badinloo M., Nguyen E., Suh W. et al. Over-expression of antimicrobial peptides contributes to aging through cytotoxic effects in Drosophila tissues // Arch. Insect Biochem. Physiol. 2018. V. 98. № 4. https://doi.org/10.1002/arch.21464
- Lucin K.M., Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? // Neuron. 2009. V. 64. № 1. P. 110–122. https://doi.org/10.1016/j.neuron.2009.08.039
- Sanuki R., Tanaka T., Suzuki F. et al. Normal aging hyperactivates innate immunity and reduces the medical efficacy of minocycline in brain injury // Brain, Behavior, and Immunity. 2019. V. 80. P. 427–438. https://doi.org/10.1016/j.bbi.2019.04.023
- Weyand C.M., Goronzy J.J. Aging of the immune system. Mechanisms and therapeutic targets // Ann. Am. Thorac. Soc. 2016. V. 13. Suppl. 5. P. S422–S428. https://doi.org/10.1513/AnnalsATS.201602-095AW
- Lee K.-A., Flores R.R., Jang I.H. et al. Immune senescence, immunosenescence and aging // Frontiers in Aging. 2022. V. 3.
- Koonin E.V., Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems: 3 // Nat. Rev. Genet. 2015. V. 16. № 3. P. 184–192. https://doi.org/10.1038/nrg3859
- Broecker F., Moelling K. Evolution of immune systems from viruses and transposable elements // Frontiers in Microbiology. 2019. V. 10.
- Gázquez-Gutiérrez A., Witteveldt J., Heras S.R. et al. Sensing of transposable elements by the antiviral innate immune system // RNA. 2021. V. 27. № 7. P. 735–752. https://doi.org/10.1261/rna.078721.121
- Li W., Prazak L., Chatterjee N. et al. Activation of transposable elements during aging and neuronal decline in Drosophila // Nat. Neurosci. 2013. V. 16. № 5. P. 529–531. https://doi.org/10.1038/nn.3368
- Van Meter M., Kashyap M., Rezazadeh S. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age // Nat. Commun. 2014. V. 5. https://doi.org/10.1038/ncomms6011
- Brunet T.D.P., Doolittle W.F. Multilevel selection theory and the evolutionary functions of transposable elements // Genome Biol. Evol. 2015. V. 7. № 8. P. 2445–2457. https://doi.org/10.1093/gbe/evv152
- Santos D., Verdonckt T.-W., Mingels L. et al. PIWI proteins play an antiviral role in lepidopteran cell lines // Viruses. 2022. V. 14. № 7. https://doi.org/10.3390/v14071442
- Kolliopoulou A., Santos D., Taning C.N.T. et al. PIWI pathway against viruses in insects // WIREs RNA. 2019. V. 10. № 6. https://doi.org/10.1002/wrna.1555
- Takahashi T., Heaton S.M., Parrish N.F. Mammalian antiviral systems directed by small RNA // PLoS Pathogens Publ.Library of Sci. 2021. V. 17. № 12. https://doi.org/10.1371/journal.ppat.1010091
- Rolland A., Jouvin-Marche E., Viret C. et al. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses // J. Immunol. 2006. V. 176. № 12. P. 7636–7644. https://doi.org/10.4049/jimmunol.176.12.7636
- López-Otín C., Blasco M.A., Partridge L. et al. The hallmarks of aging // Cell. 2013. V. 153. № 6. P. 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
- Moskalev A.A., Shaposhnikov M.V., Plyusnina E.N. et al. The role of DNA damage and repair in aging through the prism of Koch-like criteria // Ageing Res. Rev. 2013. V. 12. № 2. P. 661–684. https://doi.org/10.1016/j.arr.2012.02.001
- Iwasaki Y.W., Siomi M.C., Siomi H. PIWI-Interacting RNA: Its biogenesis and functions // Annu. Rev. Biochem. 2015. V. 84. P. 405–433. https://doi.org/10.1146/annurev-biochem-060614-034258
- Chen H., Zheng X., Xiao D. et al. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence // Aging Cell. 2016. V. 15. № 3. P. 542–552. https://doi.org/10.1111/acel.12465
- Cecco M.D., Criscione S.W., Peterson A.L. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues // Aging. 2013. V. 5. № 12. P. 867–883. https://doi.org/10.18632/aging.100621
- Lin K.-Y., Wang W.-D., Lin C.-H. et al. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling: 1 // Nat. Commun. 2020. V. 11. № 1. P. 3147. https://doi.org/10.1038/s41467-020-16858-6
- Rolland A., Jouvin-Marche E., Saresella M. et al. Correlation between disease severity and in vitro cytokine production mediated by MSRV (multiple sclerosis associated retroviral element) envelope protein in patients with multiple sclerosis // J. Neuroimmunol. 2005. V. 160. № 1–2. P. 195–203. https://doi.org/10.1016/j.jneuroim.2004.10.019
- De Cecco M., Ito T., Petrashen A.P. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation // Nature. 2019. V. 566. № 7742. P. 73–78. https://doi.org/10.1038/s41586-018-0784-9
- Wang L., Tracy L., Su W. et al. Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses: 12 // Nat. Genet. 2022. V. 54. № 12. P. 1933–1945. https://doi.org/10.1038/s41588-022-01214-9
- Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa // Physiol. Rev. 2018. V. 98. № 1. P. 477–504. https://doi.org/10.1152/physrev.00039.2016
- Daëron M. The immune system as a system of relations // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.984678
- Kawli T., He F., Tan M.-W. It takes nerves to fight infections: insights on neuro-immune interactions from C. elegans // Disease Models & Mechanisms. 2010. V. 3. № 11–12. P. 721–731. https://doi.org/10.1242/dmm.003871
- Shukla A.K., Spurrier J., Kuzina I. et al. Hyperactive innate immunity causes degeneration of dopamine neurons upon altering activity of Cdk5 // Cell Rep. 2019. V. 26. № 1. P. 131–144.e4. https://doi.org/10.1016/j.celrep.2018.12.025
- Kounatidis I., Chtarbanova S. Role of glial immunity in lifespan determination: A Drosophila perspective // Front. Immunol. 2018. V. 9. https://doi.org/10.3389/fimmu.2018.01362
- Otarigho B., Aballay A. Immunity-longevity tradeoff neurally controlled by GABAergic transcription factor PITX1/UNC-30 // bioRxiv. Cold Spring Harbor Lab. 2021. https://doi.org/10.1101/2021.02.25.432801
- Tindell S.J., Rouchka E.C., Arkov A.L. Glial granules contain germline proteins in the Drosophila brain, which regulate brain transcriptome: 1 // Commun. Biol. 2020. V. 3. № 1. P. 1–12. https://doi.org/10.1038/s42003-020-01432-z
- Qiu W., Guo X., Lin X. et al. Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease // Neurobiol. Aging. 2017. V. 57. P. 170–177. https://doi.org/10.1016/j.neurobiolaging.2017.05.020
- Schulze M., Sommer A., Plötz S. et al. Sporadic Parkinson’s disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs // Acta Neuropathol. Commun. 2018. V. 6. № 1. P. 58. https://doi.org/10.1186/s40478-018-0561-x
- Wakisaka K.T., Tanaka R., Hirashima T. et al. Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders // Brain Res. 2019. V. 1708. P. 207–219. https://doi.org/10.1016/j.brainres.2018.12.028
- Lathe R., St Clair D. Programmed ageing: Decline of stem cell renewal, immunosenescence, and Alzheimer’s disease // Biol. Rev. Camb. Philos. Soc. 2023. https://doi.org/10.1111/brv.12959
- Alcedo J., Flatt T., Pasyukova E.G. The role of the nervous system in aging and longevity // Front. Genet. 2013. V. 4. https://doi.org/10.3389/fgene.2013.00124
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

