Сезонные особенности изменчивости NmF2 на разных долготах средних широт при повышенной геомагнитной активности
- Авторы: Депуев В.X.1, Деминов М.Г.1, Деминова Г.Ф.1, Депуева А.Х.1
- 
							Учреждения: 
							- Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
 
- Выпуск: Том 64, № 5 (2024)
- Страницы: 667-677
- Раздел: Статьи
- URL: https://cardiosomatics.ru/0016-7940/article/view/686198
- DOI: https://doi.org/10.31857/S0016794024050075
- EDN: https://elibrary.ru/QQMJBW
- ID: 686198
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
На основе данных семнадцати среднеширотных ионосферных станций за 1958–1988 гг. проведен анализ сезонных особенностей концентрации максимума слоя F2 (NmF2) на разных долготах при повышенной (48 > ap(τ) > 27) геомагнитной активности, где ap(τ) – средневзвешенный (с характерным временем 14 ч) ap-индекс этой активности. В качестве характеристик изменчивости использованы стандартное отклонение σ флуктуаций NmF2 относительно спокойного уровня и средний сдвиг этих флуктуаций xave в дневные (11–13 LT) и ночные (23–01 LT) часы. Получено, что на всех анализируемых станциях дисперсия σ2 для повышенной геомагнитной активности больше, чем для спокойных условий, и, при прочих равных условиях, она максимальна зимой в ночные часы. Для повышенной геомагнитной активности во все сезоны разница в значениях xave между анализируемыми станциями достаточно большая. Одна из причин этой разницы связана с зависимостью xave от геомагнитных широт. Для выбора этих широт использованы аппроксимации геомагнитного поля наклонным диполем (TD), эксцентричным диполем (ED) или с помощью исправленных геомагнитных (CGM) координат. Получено, что зависимость xave от ED-широты точнее зависимости xave от TD-широты или CGM-широты во все сезоны в ночные часы и в равноденствия и зимой в дневные часы. Летом в дневные часы зависимости xave от ED-широты и CGM-широты сопоставимы по точности, и они точнее зависимости xave от TD-широты. Следовательно, ED-широты являются оптимальными для учета эффектов бурь в концентрации максимума слоя F2 на средних широтах во все сезоны. Этот вывод получен, по-видимому, впервые.
Ключевые слова
Полный текст
 
												
	                        Об авторах
В. X. Депуев
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
							Автор, ответственный за переписку.
							Email: depuev@izmiran.ru
				                					                																			                												                	Россия, 							Москва, Троицк						
М. Г. Деминов
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
														Email: depuev@izmiran.ru
				                					                																			                												                	Россия, 							Москва, Троицк						
Г. Ф. Деминова
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
														Email: depuev@izmiran.ru
				                					                																			                												                	Россия, 							Москва, Троицк						
А. Х. Депуева
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
														Email: depuev@izmiran.ru
				                					                																			                												                	Россия, 							Москва, Троицк						
Список литературы
- Аннакулиев С.К., Деминов М.Г., Фельдштейн А.Я., Шубин В.Н. О долготном эффекте в отрицательной фазе ионосферной бури на средних широтах // Геомагнетизм и аэрономия. Т. 37. № 1. С. 75–83. 1997.
- Деминов М.Г., Фищук Я.А. Об использовании аппроксимации геомагнитного поля эксцентричным диполем в задачах моделирования ионосферы и плазмосферы // Геомагнетизм и аэрономия. Т. 40. № 3. С. 119–123. 2000.
- Деминов М.Г., Деминова Г.Ф., Жеребцов Г.А., Полех Н.М. Свойства изменчивости концентрации максимума F2-слоя над Иркутском при разных уровнях солнечной и геомагнитной активности // Солнечно-земная физика. Т. 1. № 1. С. 56–62. 2015. https://doi.org/10.12737/6558
- Деминов М.Г., Деминова Г.Ф., Депуев В.Х., Депуева А.Х. Свойства изменчивости концентрации максимума F2-слоя над Алма-Атой при разных уровнях солнечной и геомагнитной активности // Геомагнетизм и аэрономия. Т. 63. № 5. С. 630–637. 2023. https://doi.org/10.31857/S0016794023600308
- Депуев В.X., Деминов М.Г., Деминова Г.Ф., Депуева А.Х. Изменчивость NmF2 на разных долготах средних широт: роль геомагнитной активности // Геомагнетизм и аэрономия. Т. 64. № 4. С. 503–511. 2024. https://doi.org/10.31857/S0016794024040059
- Кринберг И.А., Тащилин А.В. Ионосфера и плазмосфера. М.: Наука, 189 с. 1984.
- Черниговская М.А., Шпынев Б.Г., Хабитуев Д.С., Ратовский К.Г., Белинская А.Ю., Степанов А.Е., Бычков В.В., Григорьева С.А., Панченко В.А., Мелич Й. Исследование отклика среднеширотной ионосферы Северного полушария на магнитные бури в марте 2012 г. // Солнечно-земная физика. Т. 8. № 4. С. 46–56. 2022. https://doi.org/10.12737/szf-84202204
- Alken P., Thebault E., Beggan C.D. et al. International geomagnetic reference field: the thirteenth generation // Earth Planets Space. V. 73. № 1. ID 49. 2021. https://doi.org/10.1186/s40623-020-01288-x
- Altadill D. Time/altitude electron density variability above Ebro, Spain // Adv. Space Res. V. 39. № 5. P. 962–969. 2007. https://doi.org/10.1016/j.asr.2006.05.031
- Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V. STORM: An empirical storm-time ionospheric correction model: 1. Model description // Radio Sci. V. 37. № 5. ID 1070. 2002. https://doi.org/10.1029/2001RS002467
- Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V., Bilitza D. Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity // Radio Sci. V. 40. № 5. ID RS5009. 2005. https://doi.org/10.1029/2004RS003179
- Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S. et al. Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations // Adv. Space Res. V. 67. № 2. P. 762–776. 2021. https://doi.org/10.1016/j.asr.2020.10.028
- Cliver E.W., Kamide Y., Ling A.G. The semiannual variation of geomagnetic activity: phases and profiles for 130 years of aa data // J. Atmos. Sol.-Terr. Phy. V. 64. № 1. P. 47–53. 2002. https://doi.org/10.1016/S1364-6826(01)00093-1
- Danilov A.D., Berbeneva N.A. Statistical analysis of the critical frequency foF2 dependence on various solar activity indices // Adv. Space Res. V. 72. № 6. P. 2351–2361. 2023. https://doi.org/10.1016/j.asr.2023.05.012
- Deminov M.G., Deminova G.F., Zherebtsov G.A., Polekh N.M. Statistical properties of variability of the quiet ionosphere F2-layer maximum parameters over Irkutsk under low solar activity // Adv. Space Res. V. 51. № 5. P. 702–711. 2013. https://doi.org/10.1016/j.asr.2012.09.037
- Dudok de Wit T., Bruinsma S. The 30 cm radio flux as a solar proxy for thermosphere density modeling // J. Space Weather Space Clim. V. 7. ID A9. 2017. https://doi.org/10.1051/swsc/2017008
- Forbes J.M., Palo S.E., Zhang X. Variability of the ionosphere // J. Atmos. Sol.-Terr. Phy. V. 62. № 8. P. 685–693. 2000. https://doi.org/10.1016/S1364-6826(00)00029-8
- Fotiadis D.N., Kouris S.S. A functional dependence of foF2 variability on latitude // Adv. Space Res. V. 37. № 5. P. 1023–1028. 2006. https://doi.org/10.1016/j.asr.2005.02.054
- Fraser-Smith A.C. Centered and eccentric geomagnetic dipoles and their poles, 1600–1985 // Rev. Geophys. V. 25. № 1. P. 1–16. 1987. https://doi.org/10.1029/RG025i001p00001
- Fuller-Rowell T.J., Codrescu M.V., Rishbeth H., Moffett R.J., Quegan S. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms // J. Geophys. Res. – Space. V. 101. № 2. P. 2343–2353. 1996. https://doi.org/10.1029/95JA01614
- Gustafsson G., Papitashvili N.E., Papitashvili V.O. A revised corrected geomagnetic coordinate system for epochs 1985 and 1990 // J. Atmos. Terr. Phys. V. 54. № 11–12. P. 1609–1631. 1992. https://doi.org/10.1016/0021-9169(92)90167-J
- Kilifarska N.A. Longitudinal effects in the ionosphere during geomagnetic storms // Adv. Space Res. V. 8. № 4. P. 23–26. 1988. https://doi.org/10.1016/0273-1177(88)90200-1
- Koochak Z., Fraser-Smith A. C. An update on the centered and eccentric geomagnetic dipoles and their poles for the years 1980–2015 // Earth and Space Science. V. 4. № 10. P. 626–636. 2017. https://doi.org/10.1002/2017EA000280
- Kumar V.V., Parkinson M.L. A global scale picture of ionospheric peak electron density changes during geomagnetic storms // Space Weather. V. 15. № 4. P. 637–652. 2017. https://doi.org/10.1002/2016SW001573
- Laštovička J., Burešova D. Relationships between foF2 and various solar activity proxies // Space Weather. V. 21. № 4. ID e2022SW003359. 2023. https://doi.org/10.1029/2022SW003359
- Mikhailov A.V. Ionospheric F2-layer storms // Fisica de la Tierra. V. 12. P. 223–262. 2000.
- Pirog O., Deminov M., Deminova G., Zherebtsov G., Polekh N. Peculiarities of the nighttime winter foF2 increase over Irkutsk // Adv. Space Res. V. 47. № 6. P. 921–929. 2011. https://doi.org/10.1016/j.asr.2010.11.015
- Prölss G.W. Seasonal variations of atmospheric-ionospheric disturbances // J. Geophys. Res. V. 82. № 10. P. 1635–1640. 1977. https://doi.org/10.1029/JA082i010p01635
- Ratovsky K.G., Medvedev A.V., Tolstikov M.V. Diurnal, seasonal and solar activity pattern of ionospheric variability from Irkutsk Digisonde data // Adv. Space Res. V. 55. № 8. P. 2041–2047. 2015. https://doi.org/10.1016/j.asr.2014.08.001
- Ratovsky K.G., Medvedeva I.V. Local empirical model of ionospheric variability // Adv. Space Res. V. 71. № 5. P. 2299–2306. 2023. https://doi.org/10.1016/j.asr.2022.10.065
- Rishbeth H., Mendillo M. Patterns of F2-layer variability // J. Atmos. Sol.-Terr. Phy. V. 63. № 15. P. 1661–1680. 2001. https://doi.org/10.1016/S1364-6826(01)00036-0
- Shpynev B.G., Zolotukhina N.A., Polekh N.M. et al. The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain // J. Atmos. Sol.-Terr. Phy. V. 180. P. 93–105. 2018. https://doi.org/10.1016/j.jastp.2017.10.014
- Taylor J.R. An introduction to error analysis. Mill Valley, CA: Univer. Sci. Books, 270 p. 1982.
- Wrenn G.L. Time-weighted accumulations ap(τ) and Kp(τ) // J. Geophys. Res. – Space. V. 92. № 9. P. 10125–10129. 1987. https://doi.org/10.1029/JA092iA09p10125
- Wrenn G.L., Rodger A.S. Geomagnetic modification of the mid-latitude ionosphere - Toward a strategy for the improved forecasting of foF2 // Radio Sci. V. 24. № 1. P. 99–111. 1989. https://doi.org/10.1029/RS024i001p00099
- Zhang S.-R., Holt J.M. Ionospheric climatology and variability from long-term and multiple incoherent scatter radar observations: variability // Ann. Geophys. V. 26. № 6. P. 1525–1537. 2008. https://doi.org/10.5194/angeo-26-1525-2008
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 




