Use of Natural Flake Graphite in the Calibration of Instrumental Research Methods
- Autores: Ershov A.A.1,2, Dmitriev A.V.3
- 
							Afiliações: 
							- Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
- Ural Federal University
- Chelyabinsk State University
 
- Edição: Nº 4 (2023)
- Páginas: 55-63
- Seção: Articles
- URL: https://cardiosomatics.ru/0023-1177/article/view/661843
- DOI: https://doi.org/10.31857/S0023117723040035
- EDN: https://elibrary.ru/OMJNCS
- ID: 661843
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The size of mosaic blocks along the graphite layers (that is, the average diameter of crystallites in the basal plane) was determined by two methods for specially made model materials based on narrow fractions of flake graphite powders and milled pyrographite with lamellar particles. The first method consisted in the calculation of mosaic block sizes from a minimum of the temperature dependence of electrical conductivity using an empirical law according to Mason; the second method based on mathematical modeling used the values of the magnetoresistance of carbon materials at temperatures of 80 and 300 K. The correspondence between the sizes of mosaic blocks calculated by these methods along the graphite layers in the considered materials was shown. A correction for the lamellar shape of graphite crystallites was determined to calculate the sizes of mosaic blocks in the direction perpendicular to the graphite layers from the 002 peak broadening in the diffraction pattern.
Sobre autores
A. Ershov
Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences; Ural Federal University
														Email: ale10919@yandex.ru
				                					                																			                												                								Yekaterinburg, 620108 Russia; Yekaterinburg, 620002 Russia						
A. Dmitriev
Chelyabinsk State University
							Autor responsável pela correspondência
							Email: avdm@yandex.ru
				                					                																			                												                								Chelyabinsk, 454001 Russia						
Bibliografia
- Соседов В.П. Свойства конструкционных материалов на основе углерода (справочник). М.: Металлургия, 1975. 336 с.
- Белавин В.В., Окотруб А.В., Булушева Л.Г., Котосонов А.С., Вялых Д.В., Молодцов С.Л. // ЖЭТФ. 2006. Т. 130. № 4. С. 694. [Journal of Experimental and Theoretical Physics, 2006, vol. 103, no. 4, p. 604. https://doi.org/10.1134/S1063776106100128]
- Bukalov S.S., Zubavichus Ya.V., Leites L.A., Sorokin A.I., Kotosonov A.S. // Nanosystems: Physics, Chemistry, Mathematics. 2014. V. 5. № 1. P. 186.
- Franklin R.E. // Proc. Royal Soc. London. 1951. V. 209. № 1097. P. 196. URL: http://www.jstor.org/stable/98890
- Mason I.B. Proceeding of the fourth conference on carbon (Edited by Mrozowski). Oxford: Pergamon Press, 1960. 778 p. https://doi.org/10.1016/0022-3697(61)90228-1
- Лутков А.И., Волга В.И., Дымов Б.К. // Заводская лаборатория. 1973. № 10. С. 1201.
- Klein C.A. // J. Appl. phys. 1962. V. 33. № 11. P. 3338. https://doi.org/10.1063/1.1931167
- Дмитриев А.В. Научные основы разработки способов снижения удельного электрического сопротивления графитированных электродов: монография. Челябинск: ЧГПУ, 2005. 198 с. URL: https://www.rfbr.ru/rffi/ru/books/o_61515
- Дмитриев А.В. // Изв. вузов. Серия: Химия и химическая технология. 2013. Т. 56. № 7. С. 17.
- Дмитриев А.В. // ХТТ. 2013. Т. 47. № 6. С. 54. [Solid Fuel Chemistry, 2013, vol. 47, no. 6, p. 365. https://doi.org/10.3103/S0361521913060025]https://doi.org/10.7868/S0023117713060029
- Ершов А.А., Дмитриев А.В., Давлетов Д.Б. // ХТТ. 2021. № 6. С. 41. [Solid Fuel Chemistry, 2021, vol. 55, no. 6, p. 391. https://doi.org/10.3103/S0361521921060069]https://doi.org/10.31857/S0023117721060062
- Дмитриев А.В., Ершов А.А. // Математическое моделирование. 2020. № 1. С. 100. [Mathematical Models and Computer Simulations, 2020, vol. 12, № 5, p. 740. https://doi.org/10.1134/S2070048220050051]https://doi.org/10.20948/mm-2020-01-07
- Soule D.E. // Phys. Rev. 1958. V. 112. № 3. P. 698. https://doi.org/10.1103/PhysRev.112.698
- Chung D.D.L. // J. Mater. Sci. 2016. V. 51. P. 554. https://doi.org/10.1007/s10853-015-9284-6
- Celzard A., Mareche J.F., Furdin G. // Carbon. 2002. V. 40. № 12. P. 2713. https://doi.org/10.1016/S0008-6223(02)00183-5
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





