Quantum-chemical modeling of dispersed systems with the yttrium aluminum garnet base
- Autores: Plekhovich C.D.1, Plekhovich A.D.2, Kutiin A.M.2, Rostokina E.E.2, Budruev A.V.1, Biryukova T.Y.1
- 
							Afiliações: 
							- Lobachevsky State University
- Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences
 
- Edição: Volume 58, Nº 4 (2024)
- Páginas: 245-252
- Seção: PHOTONICS
- URL: https://cardiosomatics.ru/0023-1193/article/view/661376
- DOI: https://doi.org/10.31857/S0023119324040022
- EDN: https://elibrary.ru/TQJCPG
- ID: 661376
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Laser material Y3Al5O12 (YAG), originally known in the form of a single-crystal, has been distributed and widely commercialized in the form of optical ceramics. The desire to expand the functionality of materials made of nanocrystals due to the size effect actualizes the study of the influence of their structure on the optical (vibrational and electronic) and other properties of new promising materials with the YAG base including glass ceramics. In this work, models of crystalline alumina-iodine garnet fragments have been calculated by DFT/uPBEPBE/SDD, DFT/uPBEPBE/lanl2DZ, and DFT/uB3PW91/SDD methods. The IR spectra were calculated by DFT/uPBEPBE/lanl2DZ method and the absorption bands of the calculated wave numbers were correlated with the measured ones. The electronic absorption spectrum and energy levels were calculated by the DFT/RB3PW91/SDD method.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
C. Plekhovich
Lobachevsky State University
							Autor responsável pela correspondência
							Email: plekhovich@ihps-nnov.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
A. Plekhovich
Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences
														Email: plekhovich@ihps-nnov.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
A. Kutiin
Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences
														Email: plekhovich@ihps-nnov.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
E. Rostokina
Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences
														Email: plekhovich@ihps-nnov.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
A. Budruev
Lobachevsky State University
														Email: plekhovich@ihps-nnov.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
T. Biryukova
Lobachevsky State University
														Email: plekhovich@ihps-nnov.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
Bibliografia
- Osipov V.V., Shitov V.A., Maksimov R.N., Solomonov V.I., Lukyashin K.E., Orlov A.N. // Photonics. 2018. V. 12. № 3. P. 318–334.
- Ikesue A., Aung Y.L., Taira T., Kamimura T., Yoshida K., Messing. G.L. // Annu. Rev. Mater. Res. 2006. V. 36. P. 397.
- Lukowiak A., Wiglusz R.J., Maczka M., Gluchowski P., Strek W. // Chemical Physics Letters. 2010. V. 494. № 4–6. P. 279–283. https://doi.org/10.1016/j.cplett.2010.06.033
- Solomonov V.I., Osipov V.V., Shitov V.A., Lukyashin K.E., Bubnova A.S. // Optics and Spectroscopy. 2020. V. 128, Iss. 1. P. 5–9. https://doi.org/10.21883/OS.2020.01.48831.117-19
- Volzhenskaya L.G., Zorenko Y.V., Patsagan N.I., Pashkovsky M.V. // Opt. and Spectrum. 1987. V. 63. № 1. P. 135.
- Zorenko Y.V., Pashkovsky M.V., Batenchuk M.M., Limarenko L.N., Nazar I.V. // Opt. and Spectrum. 1996. V. 80. No. 5. P. 776.
- Balabanov S.S., Gavrishchuk E.M., Rostokina E.Ye., Plekhovich A.D., Kuryakov V.N., Amarantov S.V., et al. // Ceramics International. 2016. V. 42. P. 17571–17580. https://doi.org/10.1016/j.ceramint.2016.08.071
- Bangjun L., Ke Gai, Qian W., Tong Z. // Ceram. Int. 2023. V. 49. № 19. P. 32318–32323. https://doi.org/10.1016/j.ceramint.2023.07.098
- Balabanov S.S., Gavrishchuk E.M., Drobotenko V.V., Plekhovich A.D., Rostokina E.E. // Neorg. Mater. 2014. V. 50. № 10. P. 1114–1118. https://doi.org/10.7868/S0002337X14100030
- Frisch M.J., Trucks G.W., Schlegel H.B., et.al. // Gaussian 03 Gaussian, Inc., Wallingford, CT. 2003.
- Data retrieved from the Materials Project for Y3Al5O12 (mp-3050) from database version v2022.10.28. https://doi.org/10.17188/1204905
- Dobrzycki Ł., Bulska E., Pawlak D.A., Frukacz Z., Wozniak K. // Inorg. Chem. 2004. V. 43. P. 7656–7664. https://doi.org/10.1021/ic049920z
- Roose N.S., Anisimov N.A. // Opt. and Spectrum. 1975. V. 38. № 3. P. 627.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 










