Influence of absorbing layers on the average dose and dose uniformity during irradiation with 1–3 MEV electrons
- Authors: Bludenko A.V.1, Ponomarev A.V.1
- 
							Affiliations: 
							- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
 
- Issue: Vol 58, No 4 (2024)
- Pages: 322-328
- Section: RADIATION CHEMISTRY
- URL: https://cardiosomatics.ru/0023-1193/article/view/661436
- DOI: https://doi.org/10.31857/S0023119324040127
- EDN: https://elibrary.ru/TPFURF
- ID: 661436
Cite item
Abstract
Electron beams with energies up to 3 MeV, widely used in technological and research practice, have a relatively low penetration depth into matter, and the nonuniformity of energy absorption can reach 30% per 1 mm of path. High nonuniformity, as well as the high cost of radiation, requires the researcher to have skills in optimizing the uniformity of irradiation and reducing energy losses. This work presents the dependence of the average absorbed dose and dose nonuniformity when irradiating a liquid with a horizontal beam in test tubes or pipes with different glass wall thicknesses (0.2–2 mm Pyrex). The dependencies are applicable to clarify, predict and analyze the distribution of absorbed dose in materials.
Keywords
Full Text
 
												
	                        About the authors
A. V. Bludenko
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
														Email: ponomarev@ipc.rssi.ru
				                					                																			                												                	Russian Federation, 							Moscow						
A. V. Ponomarev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
							Author for correspondence.
							Email: ponomarev@ipc.rssi.ru
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Berejka A.J., Cleland M.R., Walo M. // Radiat. Phys. Chem. 2014. V. 94. P. 141.
- Ponomarev A.V. // Radiat. Phys. Chem. 2016. V. 118. P. 138.
- Chmielewski A.G. // Radiat. Phys. Chem. 2023. V. 213. P. 111233.
- Ponomarev A.V., Ershov B.G. // Environ. Sci. Technol. 2020. V. 54. P. 5331.
- Yuri Kim, Ershov B.G., Ponomarev A.V. // High Energy Chem. 2020. V. 54. P. 462.
- Pikaev A.K. // High Energy Chem. 2001. V. 35. P. 367.
- Woods R., Pikaev A. Applied radiation chemistry. Radiation processing. NY: Wiley, 1994.
- Gryczka U., Zimek Z., Walo M., Chmielewska-Śmietanko D., Bułka S. // Appl. Sci. 2021. V. 11. P. 11194.
- Gromov A.A., Zhanzhora A.P., Kovalenko O.I. // Meas. Stand. Ref. Mater. 2022. V. 17. P. 23.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted




