Effect of solvents on optical properties and dynamics of exciton states in quantum dots CdZnS/ZnS doped with Mn2+

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dynamics of differential absorption spectra of Mn2+ : Zn0.48Cd0.52S/ZnS quantum dots (QDs) after excitation with a femtosecond (fs) pulse of 360 nm in aprotonic nonpolar cyclohexane and polar propylene carbonate solvents in comparison with the protonic polar solvent water has been studied by femtosecond laser spectroscopy method. The absorption and luminescence spectra of QDs in water revealed bands related to trapped states. The fading band related to the edge exciton of QD attenuates significantly faster in water than in aprotonic solvents, which suggests rapid electron transfer from the 1Se level to trap states in competition with electron transfer to manganese. Apparently, the competition of these processes is the reason for the decrease in the quantum yield of manganese luminescence in Mn2+ : Zn0.48Cd0.52S/ZnS when passing from aprotonic solvents to water.

Sobre autores

A. Vasin

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Autor responsável pela correspondência
Email: a2vasin@yandex.ru
Rússia, Dolgoprudny; Moscow

A. Dobryakov

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Rússia, Dolgoprudny; Moscow

A. Kostrov

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Rússia, Dolgoprudny; Moscow

E. Koroznikova

Moscow Institute of Physics and Technology

Email: a2vasin@yandex.ru
Rússia, Dolgoprudny

F. Gostev

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Rússia, Dolgoprudny; Moscow

I. Shelaev

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Rússia, Dolgoprudny; Moscow

O. Antonova

N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Rússia, Moscow

S. Kochev

A.N. Nesmeyanov Institute of Organoelement Compounds of the RAS

Email: a2vasin@yandex.ru
Rússia, Moscow

V. Nadtochenko

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Rússia, Dolgoprudny; Moscow

Bibliografia

  1. Kamat P.V. // J. Phys. Chem. C. Am. Chem. Soc. 2008. V. 112. № 48. P. 18737–18753.
  2. Sun P. et al. // Chem. Eng. J. 2023. V. 458. P. 141399.
  3. Rtimi S., Kiwi J., Nadtochenko V. // Curr. Opin. Chem. Eng. 2021. V. 34. P. 100731.
  4. Martynenko I.V. et al. // J. Mater. Chem. B. Royal Soc. Chem. 2017. V. 5. № 33. P. 6701–6727.
  5. Cherepanov D. et al. // Nanomaterials. MDPI. 2021. V. 11. № 11. P. 3007.
  6. Nadtochenko V. et al. // Chem. Phys. Lett. North-Holland. 2020. V. 743. P. 137160.
  7. Pandey A., Sarma D. // Z. Anorg. Allg. Chem. 2016. V. 642. № 23. P. 1331–1339.
  8. Wang C.W., Orrison C., Son D.H. // Bull. Korean Chem. Soc. 2022. V. 43. № 4. P. 492–500.
  9. Yu W.W. et al. // Biochem. Biophys. Res. Commun. 2006. V. 348. № 3. P. 781–786.
  10. Spirin M.G., Brichkin S.B., Razumov V.F. // High Energy Chem. 2015. V. 49. № 6. P. 426–432.
  11. Cui S.C. et al. // J. Phys. Chem. C. Am. Chem. Soc. 2010. V. 114. № 2. P. 1217–1225.
  12. Gostev F.E. et al. // High Energy Chem. 2018. V. 52. № 6. P. 508–509.
  13. Gostev F.E. et al. // High Energy Chem. 2018. V. 52. № 6. P. 492–497.
  14. du Fossé I. et al. // J. Phys. Chem. C. Am. Chem. Soc. 2021. V. 125. № 43. P. 23968–23975.
  15. Moon H. et al. // Adv. Mater. 2019. V. 31. № 34. P. 1804294.
  16. Nadtochenko V. et al. // J. Photochem. Photobiol. A Chem. 2022. V. 429. P. 113946.
  17. Archer D.G., Wang P. // J. Phys. Chem. Ref. Data. 1990. V. 19. № 2. P. 371–411.
  18. Simeral L., Amey R.L. // J. Phys. Chem. Am. Chem. Soc. 1970. V. 74. № 7. P. 1443–1446.
  19. Barthel J., Feuerlein F. // J. Sol. Chem. 1984. V. 13. № 6. P. 393–417.
  20. Hassan G.E. et al. // Opt. Mater. (Amst). North-Holland. 1996. V. 5. № 4. P. 327–332.
  21. Kabachii Y.A. et al. // Mendeleev Commun. 2021. V. 31. № 3. P. 315–318.
  22. Pradeep K.R., Viswanatha R. // APL Mater. 2020. V. 8. № 2. P. 20901.
  23. Pradhan N., Peng X. // J. Am. Chem. Soc. 2007. V. 129. № 11. P. 3339–3347.
  24. Klimov V.I. et al. // Phys. Rev. B. Am. Phys. Soc. 1999. V. 60. № 19. P. 13740.
  25. Pechstedt K. et al. // J. Phys. Chem. C. Am. Chem. Soc. 2010. V. 114. № 28. P. 12069–12077.
  26. Sethi R. et al. // Chem. Phys. Lett. North-Holland. 2010. V. 495. № 1–3. P. 63–68.
  27. de Jesus J.P.A., Jimenez M.Z., La Porta F. de A. // Comput. Mater. Sci. 2021. V. 188. P. 110147.
  28. Osman M.A., Abd-Elrahim A.G., Othman A.A. // J. Alloys Comp. 2017. V. 722. P. 344–357.
  29. Wang M. et al. // Chem. Cent. J. Bio. Med Central. 2011. V. 5. № 1. P. 1–10.
  30. Wang M. et al. // RSC Adv. Royal Soc. Chem. 2015. V. 5. № 106. P. 87496–87503.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025