Quenching of gadolinium(III) ion photoluminescence in liquid ammonia by solvated electron

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of a solvated electron on the gadolinium(III) chloride photoluminescence in liquid ammonia at 293 K and a pressure of 8.8 atm is considered. The solubility of GdCl3 crystalline hydrate in ammonia is 5 × 10–4 M. The solvated Gd3+ ion luminescence spectrum thein this solution coincides with the hydrated Gd3+ ion luminescence spectrum in a similar aqueous solution at atmospheric pressure. The lifetime τ in the excited state (6P7/2) of the gadolinium(III) ion is longer in ammonia (2.6 ms) than in water (2.0 ms). Luminescence of (Gd3+)* in ammonia is quenched by a solvated electron (es) formed during the dissolution of lithium metal. Under these conditions, the Gd3+ and es solution is unstable, precipitates are formed, and there is a continuous change in the concentrations of the components involved in the quenching reaction (Gd3+)* + es → Gd2+. Because of this, the gadolinium ion photoluminescence intensity this not applicable to assessing the quenching efficiency by a solvated electron. The quenching efficiency (τ0–τ)/τ linear dependence the on the quencher concentration was obtained by measuring the gadolinium ion τ at a variable concentration es, which was determined from the solution optical density at 1400 nm in its absorption band. The bimolecular rate constant for the proposed quenching reaction, found from this dependence, was k = (5.3 ± 0.3) × 107 M−1 ∙ s−1.

作者简介

A. Abdrakhmanov

Institute of Petroleum Chemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: abdr-73@ya.ru
俄罗斯联邦, Ufa

G. Sharipov

Institute of Petroleum Chemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: abdr-73@ya.ru
俄罗斯联邦, Ufa

B. Gareev

Institute of Petroleum Chemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: abdr-73@ya.ru
俄罗斯联邦, Ufa

L. Yakshembetova

Institute of Petroleum Chemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: abdr-73@ya.ru
俄罗斯联邦, Ufa

参考

  1. Пикаев А.К., Шилов В.П., Спицын В.И. Радиолиз водных растворов лантанидов и актинидов. М.: Наука, 1983. 240 с.
  2. Шарипов Г.Л., Казаков В.П. // Изв. АН СССР. Сер. хим. 1979. № 1. C. 254. https://doi.org/10.1007/BF00925442
  3. Казаков В.П., Шарипов Г.Л. Радиолюминесценция водных растворов. М.: Наука, 1986. 136 с.
  4. Kilin S.F., Rozman I.M. // Opt. Spektrosk. 1963. V. 15. № 4. P. 494.
  5. Stein G., Tomkiewicz M. // Trans. Faraday Soc. 1971. V. 67. № 582. P. 1678. https://doi.org/10.1039/TF9716701678
  6. Sharipov G.L., Abdrakhmanov A.M., Gareev B.M., Yakshembetova L.R. // High Energy Chemistry. 2024. V. 58. № 2. P. 260–264. https://doi.org/10.1134/S0018143924020103
  7. Sharipov G.L., Gareev B.M., Abdrakhmanov A.M. // Journal of Photochemistry and Photobiology A: Chemistry. 2020. V. 402. P. 112800. https://doi.org/10.1016/j.jphotochem.2020.112800
  8. Шарипов Г.Л., Гареев Б.М., Абдрахманов А.М., Якшембетова Л.Р. // Известия УНЦ РАН. 2021. № 4. С. 23. https://doi.org/10.31040/2222-8349-2021-0-4-22-29
  9. Abdrakhmanov A.M., Sharipov G.L., Gareev B.M., Yakshembetova L.R. // Journal of Luminescence. 2024. V. 273. 120694. https://doi.org/10.1016/j.jlumin.2024.120694
  10. Thompson J.C. Electrons in Liquid Ammonia. Oxford: Claredon, 1976, 297 p.
  11. The Engineering ToolBox (2003). Ammonia – Vapour Pressure at Gas-Liquid Equilibrium. [online] Available at: https://www.engineeringtoolbox.com/ammonia-pressure-temperature-d_361.html [Accessed 10.07.2024].
  12. Farhataziz, Perkey L.M., Hentz R.R. // J. Chem. Phys. 1974. V. 60. P. 4383. https://doi.org/10.1063/1.1680915
  13. Хайкин Г.И., Жигунов В.А., Шорников В.В. // Химия высоких энергий. 1979. Т. 13. № 4. С. 314.
  14. Кондратьева Е.В. // Опт. и спектр. 1958. Т. 5. C. 214.
  15. Кондратьева Е.В., Лазеева Г.С. // Опт. и спектр. 1960. Т. 8. C. 132.
  16. Telser Th., Schindewolf U. // Ber. Bunsenges. Phys. Chem. 1984. V. 88. P. 488. https://doi.org/10.1002/bbpc.19840880514
  17. Burow D.F., Lagowski J.J. Spectroscopy of Dilute Metal-Deuteroammonia Solutions // In Solvated Electron; Hart, E.; Advances in Chemistry; ACS: DC, 1965. P. 125−137. https://doi.org/10.1021/ba-1965-0050.ch010
  18. Warshawsky I. // J. Inorg. NucI. Chem. 1963. V. 25. № 5. P. 601. https://doi.org/10.1016/0022-1902(63)80247-X
  19. Lakowicz J.R. Principles of Fluorescence Spectroscopy. Springer Science & Business Media: Science, 2007, 954 p.
  20. Kavarnos G.J., Turro N.J. // Chem. Rev. 1986. V. 86. P. 401. https://doi.org/10.1021/CR00072A005
  21. Полуэктов Н.С., Кононенко Л.И., Ефрюшина Н.П., Бельтюкова С.В. Спектрофотометрические и люминесцентные методы определения лантанидов. Киев: Наукова Думка, 1989. 256 с.
  22. Piechota E.J., Meyer G.J. // J. Chem. Educ. 2019. V. 96. № 11. P. 2450. https://doi.org/10.1021/acs.jchemed.9b00489

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025