Morphology and spatial distribution of ordered domains in GaInP/GaAs(001) according to transmission electron microscopy
- Authors: Myasoedov А.V.1, Bert N.A.1, Kalyuzhnyy N.А.1, Mintairov A.M.1
- 
							Affiliations: 
							- Ioffe Institute RAS
 
- Issue: Vol 69, No 4 (2024)
- Pages: 646-651
- Section: ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ
- URL: https://cardiosomatics.ru/0023-4761/article/view/673153
- DOI: https://doi.org/10.31857/S0023476124040108
- EDN: https://elibrary.ru/XCRPCS
- ID: 673153
Cite item
Abstract
The structure of epitaxial films of the GaInP solid solution, in which ordering occurs, was studied using transmission electron microscopy. The films were grown by metalorganic vapor phase epitaxy on GaAs (001) substrates near the half-composition point. During the study, dark-field images obtained using superstructure reflections for cross-sectional and plan-view specimens of films were analyzed. The morphology and relative spatial arrangement of ordered domains have been determined. The phenomenon of spontaneous self-organization of regions with CuPt–B+ and CuPt–B– ordering near the surface was discovered, while in the bulk of the film the domains are uniformly located and mutually overlap each other. The effect of spatial separation of domains is associated with the lattice relaxation, leading to a change in the surface topology.
Full Text
 
												
	                        About the authors
А. V. Myasoedov
Ioffe Institute RAS
							Author for correspondence.
							Email: amyasoedov88@gmail.com
				                					                																			                												                	Russian Federation, 							St. Petersburg						
N. A. Bert
Ioffe Institute RAS
														Email: amyasoedov88@gmail.com
				                					                																			                												                	Russian Federation, 							St. Petersburg						
N. А. Kalyuzhnyy
Ioffe Institute RAS
														Email: amyasoedov88@gmail.com
				                					                																			                												                	Russian Federation, 							St. Petersburg						
A. M. Mintairov
Ioffe Institute RAS
														Email: amyasoedov88@gmail.com
				                					                																			                												                	Russian Federation, 							St. Petersburg						
References
- Adachi S. Physical Properties of III–V Semiconductor Compounds. NY.: John Wiley & Sons, 1992. 13 p. https://doi.org/10.1002/352760281X
- Suzuki T. Basic Aspects of Atomic Ordering in III–V Semiconductor Alloys. NY.: Springer, 2002. 2 p. https://doi.org/10.1007/978-1-4615-0631-7_1
- Zunger A., Wood D.M. // J. Cryst. Growth. 1989. V. 98. № 1–2. P. 1. https://doi.org/10.1016/0022-0248(89)90180-2
- Srivastava G.P., Martins J.L., Zunger A. // Phys. Rev. B1985. V. 31. № 4. P. 2561. https://doi.org/10.1103/PhysRevB.31.2561
- Gomyo A., Suzuki T., Kobayashi K. et al. // Appl. Phys. Lett. 1987. V. 50. № 11. P. 673. https://doi.org/10.1063/1.98062
- Gomyo A., Suzuki T., Iijima S. // Phys. Rev. Lett. 1988. V. 60. № 25. P. 2645. https://doi.org/10.1103/PhysRevLett.60.2645
- Wei S.H., Laks D.B., Zunger A. // Appl. Phys. Lett. 1993. V. 62. № 16. P. 1937. https://doi.org/10.1063/1.109496
- Kurtz S.R. // J. Appl. Phys. 1993. V. 74. № 6. P. 4130. https://doi.org/10.1063/1.354437
- Froyen S., Zunger A., Mascarenhas A. // Appl. Phys. Lett. 1996. V. 68. № 20. P. 2852. https://doi.org/10.1063/1.116346
- Wei S.-H., Zhang S., Zunger A. // Jpn. J. Appl. Phys. 2000. V. 39. № S1. P. 237. https://doi.org/10.7567/jjaps.39s1.237
- Ponce F.A. // J. Phys. Conf. Ser. 2019. V. 1173. № 1. P. 012001. https://doi.org/10.1088/1742-6596/1173/1/012001
- Su P.Y., Liu H., Kawabata R.M.S. et al. // J. Appl. Phys. 2019. V. 125. № 5. P. 1. https://doi.org/10.1063/1.5063941
- Martín G., Coll C., López-Conesa L. et al. // ACS Appl. Electron. Mater. 2022. V. 4. № 7. P. 3478. https://doi.org/10.1021/acsaelm.2c00415
- Mintairov A.M., Kapaldo J., Merz J.L. et al. // Phys. Rev. B. 2017. V. 95. № 11. P. 1. https://doi.org/10.1103/PhysRevB.95.115442
- Mintairov A.M., Lebedev D.V., Bert N. et al. // Appl. Phys. Lett. 2019. V. 115. № 20. https://doi.org/10.1063/1.5126527
- Ahrenkiel S.P., Jones K.M., Matson R.J. et al. // MRS Proc. 1999. V. 583. P. 243. https://doi.org/10.1557/PROC-583-243
- Zhang S.B., Froyen S., Zunger A. // Appl. Phys. Lett. 1995. V. 67. P. 3141. https://doi.org/10.1063/1.114860
- Baxter C.S., Stobbs W.M., Wilkie J.H. // J. Cryst. Growth 1991. V. 112. № 2–3. P. 373. https://doi.org/10.1016/0022-0248(91)90313-T
- Bellon P., Chevalier J.P., Augarde E. et al. // J. Appl. Phys. 1989. V. 66. № 6. P. 2388. https://doi.org/10.1063/1.344245
- Nasi L., Salviati G., Mazzer M., Zanotti‐Fregonara C. // Appl. Phys. Lett. 1995. V. 68. P. 3263. https://doi.org/10.1063/1.116568
- Matthews J.W., Blakeslee A.E. // J. Cryst. Growth 1974. V. 27. P. 118. https://doi.org/10.1016/S0022-0248(74)80055-2
- Gutekunst G., Mayer J., Rühle M. // Philos. Mag. A. 1997. V. 75. № 5. P. 1329. https://doi.org/10.1080/01418619708209859
- Romanov A.E. // Int. J. Mater. Res. 2005. V. 96. № 5. P. 455. https://doi.org/doi.org/10.3139/ijmr-2005-0083
- Yastrubchak O., Wosinski T., Figielski T., Lusakowska E. // Physica E. 2003. V. 17. № 1–4. P. 561. https://doi.org/10.1016/S1386-9477(02)00871-8
- Zhang C.L., Xu B., Wang Z.G. et al. // Physica E. 2005. V. 25. № 4. P. 592. https://doi.org/10.1016/j.physe.2004.09.008
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted



