Microstructure of gold nanoparticles obtained from a solution of hydrochloroauric acid by picosecond laser irradiation
- Authors: Vasiliev A.L.1, Ivanova A.G.1, Bondarenko V.I.1, Golovin A.L.1, Kononenko V.V.2, Ashikkalieva K.K.2, Zavedeev E.V.2, Konov V.I.2
- 
							Affiliations: 
							- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
 
- Issue: Vol 69, No 2 (2024)
- Pages: 243-251
- Section: REAL STRUCTURE OF CRYSTALS
- URL: https://cardiosomatics.ru/0023-4761/article/view/673204
- DOI: https://doi.org/10.31857/S0023476124020078
- EDN: https://elibrary.ru/YTHIDH
- ID: 673204
Cite item
Abstract
The morphology and crystal structure of Au nanoparticles obtained by irradiating an aqueous solution of Hydrochloroauric acid (HAuCl4) with laser pulses were investigated using transmission electron microscopy, electron diffraction, and electron tomography methods. Along with round and shapeless particles characterized by a cubic structure with twins, there are flat particles with trigonal morphology. Such particles have a layered microstructure, with an alternation of face-centered cubic and close-packed hexagonal crystal structure of layers parallel to the base planes of the prism.
Full Text
 
												
	                        About the authors
A. L. Vasiliev
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
							Author for correspondence.
							Email: a.vasiliev56@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
A. G. Ivanova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
V. I. Bondarenko
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
A. L. Golovin
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
V. V. Kononenko
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
K. Kh. Ashikkalieva
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
E. V. Zavedeev
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
V. I. Konov
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Amendola V., Amans D., Ishikawa Y. et al. // Chemistry. 2020. V. 26. № 42. P. 9206. https://doi.org/10.1002/chem.202000686
- Rakov I.I., Pridvorova S.M., Shafeev G.A. // Laser Phys. Lett. 2019. V. 17. № 1. 016004. https://doi.org/10.1088/1612-202X/ab5c21
- Smirnov V.V., Zhilnikova M.I., Barmina E.V. et al. // Chem. Phys. Lett. 2021. V. 763. 138211. https://doi.org/10.1016/j.cplett.2020.138211
- Pavlov I.S., Barmina E.V., Zhilnikova M.I. et al. // Nanobiotechnology Reports. 2022. V. 17. № 3. P. 290. https://doi.org/10.1134/S2635167622030132
- John M.G., Meader V.K., Tibbetts K.M. // Photochemistry and Photophysics – Fundamentals to Applications / Ed. Saha S. IntechOpen, 2018. P. 137. https://doi.org/10.5772/intechopen.75075
- Okamoto T., Nakamura T., Sakota K., Yatsuhashi T. // Langmuir. 2019. V. 35. № 37. P. 12123. https://doi.org/10.1021/acs.langmuir.9b01854
- Ashikkalieva K.K., Kononenko V.V., Vasil’ev A.L. et al. // Phys. Wave Phen. 2022. V. 30. P. 17. https://doi.org/10.3103/S1541308X22010046
- Rodrigues C.J., Bobb J.A., John M.G. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 45. P. 28465. https://doi.org/10.1039/C8CP05774E
- Nakamura T., Herbani Y., Ursescu D. et al. // AIP Adv. 2013 V. 3. № 8. P. 082101. https://doi.org/10.1063/1.4817827
- Nakamura T., Mochidzuki Y., Sato S. // J. Mater. Res. 2008. V. 23. № 4. P. 968. https://doi.org/10.1557/jmr.2008.0115
- Barbosa H.F.P., Neumanna M.G., Cavalheiro C.C.S. // J. Braz. Chem. Soc. 2019. V. 30. № 4. P. 813. https://doi.org/10.21577/0103-5053.20180213
- Tibbetts K.M., Tangeysh B., Odhner J.H., Levis R.J. // J. Phys. Chem. A. 2016 V. 120. № 20. P. 3562. https://doi.org/10.1021/acs.jpca.6b03163
- Kumar V., Ganesan S. // Int. J. Green Nanotechnol. 2011. V. 3. № 1. P. 47. https://doi.org/10.1080/19430892.2011.574538
- Muttaqin, Nakamura T., Sato S. // Appl. Phys. A. 2015. V. 120. P. 881. https://doi.org/10.1007/s00339-015-9314-x
- Nakashima N., Yamanaka K., Saeki M. et al. // J. Photochem. Photobiol. A. 2016. V. 319–320. P. 70. https://doi.org/10.1016/j.jphotochem.2015.12.021
- Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
- Das M., Shim K.H., An S.S.A., Yi D.K. // Toxicol. Environ. Health Sci. 2011. V. 3. № 4. P. 193. https://doi.org/10.1007/s13530-011-0109-y
- Дыкман Л.А., Богатырев В.А., Щеголев С.Ю., Хлебцов Н.Г. Золотые наночастицы: синтез, свойства, биомедицинское применение. М.: Наука, 2008. 319 с.
- Dykman L.A., Khlebtsov N.G. // Acta Naturae. 2011. V. 3. № 2. P. 34.
- Nurmukhametov D.R., Zvekov A.A., Zverev A.S. et al. // Quantum Electron. 2017. V. 47. № 7. P. 647. https://doi.org/10.1070/QEL16329
- Krainov A.D., Agrba P.D., Sergeeva E.A. et al. // Quantum Electron. 2014. V. 44. № 8. P. 757. https://doi.org/10.1070/QE2014v044n08ABEH015494
- Simakin A.V., Voronov V.V., Shafeev G.A. // Phys. Wave Phen. 2007. V. 15. № 4. P. 218. https://doi.org/10.3103/S1541308X07040024
- Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
- Ashikkalieva K.K., Kononenko V.V., Arutyunyan N.R. et al. // Phys. Wave Phenom. 2023. V. 31. № 1. P. 44. https://doi.org/10.3103/S1541308X23010016
- Pashley D.W., Stowell M.J. // Philos. Mag. 1963. V. 8. P. 1605.
- Davey J.E., Deiter R.H. // J. Appl. Phys. 1965. V. 36. P. 284.
- Davey W.P. // Phys. Rev. 1925. V. 25. P. 753.
- Kirkland A.I., Edwards P.P., Jefferson D.A., Duff D.G. // Annu. Rep. Prog. Chem. C. 1990. V. 87. P. 247. https://doi.org/10.1039/PC9908700247
- Kirkland A.I., Jefferson D.A., Duff D.G. et al. // Proc. R. Soc. Lond. A. 1993. V. 440. P. 589.
- Germain V., Li J., Ingert D. et al. // J. Phys. Chem. B. 2003. V. 107. № 34. P. 8717.
- Morriss R.H., Bottoms W.R., Peacock R.G. // J. Appl. Phys. 1968. V. 39. P. 3016.
- Cherns D. // Philos. Mag. 1974. V. 30. P. 549.
- Castaño V., Gómez A., José Yacamán M. // Surface Sci. Lett. 1984. V. 146. № 2. P. L587. https://doi.org/10.1016/0167-2584(84)90756-4
- Reyes-Gasga J., Gómez-Rodríguez A., Gao X., Yacamán M.J. // Ultramicroscopy. 2008. V. 108. P. 929. https://doi.org/10.1016/j.ultramic.2008.03.005
- Mendoza-Ramirez M.C., Silva-Pereyra H.-G., Avalos-Borja M. // Mater. Characterization. 2020. V. 164. P. 110313.
- Midgley P.A., Eggeman A.S. // IUCrJ. 2015. V. 2. P. 126. https://doi.org/10.1107/S2052252514022283
- Palatinus L., Brázda P., Jelínek M. et al. // Acta Cryst. B. 2019. V. 75. № 4. P. 512. https://doi.org/10.1107/S2052520619007534
- Liu J., Niu Wenxin., Liu G. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 4387.
- Park G.-S., Min K.S., Kwon H. et al. // Adv. Mater. 2021. Article 2100653. P. 1.
- Huang X., Li H., Li S. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 12245.
- Jany B., Gauquelin N., Willhammar T. et al. // Sci. Rep. 2017. V. 7. P. 42420. https://doi.org/10.10/srep42420
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted






