Synthesis features of LiRF4 (R = Er–Lu) nanoparticles by the high-temperature co-precipitation method and their photoluminescent properties
- Авторлар: Koshelev A.V.1, Artemov V.V.1, Arkharova N.A.1, Seyed Dorraji M.S.2, Karimov D.N.1
- 
							Мекемелер: 
							- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- University of Zanjan
 
- Шығарылым: Том 69, № 2 (2024)
- Беттер: 319-329
- Бөлім: НАНОМАТЕРИАЛЫ, КЕРАМИКА
- URL: https://cardiosomatics.ru/0023-4761/article/view/673213
- DOI: https://doi.org/10.31857/S0023476124020168
- EDN: https://elibrary.ru/YSECJW
- ID: 673213
Дәйексөз келтіру
Аннотация
Nanoparticles of LiRF4 (R = Y, Yb, Lu), activated with Yb3+/Er3+ and Yb3+/Tm3+ ions, were obtained by the high-temperature co-precipitation method. The influence of the precursor molar ratio and the cationic composition of matrices on their dimensionality and morphology was studied. A method for the heterogeneous crystallization of these compounds using LiYF4 nanoseeds was optimized, which opens up opportunities for controlled synthesis of LiRF4 nanoparticles with controllable characteristics. Among the studied objects, LiYF4@LiYbF4:Tm3+@LiYF4 nanoparticles demonstrate the most intense anti-Stokes photoluminescence in the UV (λ = 362 nm) and blue (λ = 450 nm) ranges, exceeding similar indicators for β-NaYF4:Yb3+/Tm3+@NaYF4 particles. LiYF4@LiLuF4:Yb3+/Er3+@LiYF4 nanoparticles are the most efficient converters of IR radiation in the λ = 1530 nm range among the investigated isostructural matrices and exhibit similar spectral-luminescent properties to the β-NaYF4:Yb3+/Er3+@NaYF4 compound with an equivalent degree of codoping. The obtained results allow considering LiYF4@LiYbF4:Tm3+@LiYF4 and LiYF4@LiLuF4:Yb3+/Er3+@LiYF4 nanoparticles as a real alternative to the most widely used phosphors based on the hexagonal matrix β-NaYF4 for photonics and biotechnology applications.
Толық мәтін
 
												
	                        Авторлар туралы
A. Koshelev
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
							Хат алмасуға жауапты Автор.
							Email: avkoshelev03@gmail.com
				                					                																			                												                	Ресей, 							Moscow						
V. Artemov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: avkoshelev03@gmail.com
				                					                																			                												                	Ресей, 							Moscow						
N. Arkharova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: avkoshelev03@gmail.com
				                					                																			                												                	Ресей, 							Moscow						
M. Seyed Dorraji
University of Zanjan
														Email: avkoshelev03@gmail.com
				                					                																			                												                	Иран, 							Zanjan						
D. Karimov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: avkoshelev03@gmail.com
				                					                																			                												                	Ресей, 							Moscow						
Әдебиет тізімі
- Combes C.M., Dorenbos P., Van Eijk C.W. et al. // J. Luminescence. 1997. V. 71. № 1. P. 65. https://doi.org/10.1016/S0022-2313(96)00118-4
- Каминский А.А., Ляшенко А.И., Исаев Н.П. и др. // Квантовая электроника. 1998. Т. 25. № 3. С. 195.
- Loiko P., Soulard R., Guillemot L. et al. // IEEE J. Quantum Electron. 2019. V. 55. № 6. P. 1. https://doi.org/10.1109/JQE.2019.2943477
- Yokota Y., Yamaji A., Kawaguchi N. et al. // Phys. Status Solidi. С. 2012. V. 9. № 12. P. 2279. https://doi.org/10.1002/pssc.201200290
- Kamada K., Hishinuma K., Kurosawa S. et al. // Opt. Mater. 2016. V. 61. P. 134. https://doi.org/10.1016/j.optmat.2016.09.019
- Qiu Z., Wang S., Wang W., Wu S. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 26. P. 29835. https://doi.org/10.1021/acsami.0c07765
- Vasyliev V., Villora E.G., Nakamura M. et al. // Opt. Express. 2012. V. 20. № 13. P. 14460. https://doi.org/10.1364/OE.20.014460
- Romanova I.V., Tagirov M.S. // Magnetic Resonance in Solids. Electronic J. 2019. V. 21. № 4. P. 13. https://doi.org/10.26907/mrsej-19412
- Zelmon D.E., Erdman E.C., Stevens K.T. et al. // Appl. Opt. 2016. V. 55. № 4. P. 834. https://doi.org/10.1364/AO.55.000834
- Khaydukov E.V., Mironova K.E., Semchishen V.A. et al. // Sci. Rep. 2016. V. 6. № 1. P. 35103. https://doi.org/10.1038/srep35103
- Hao S., Shang Y., Li D. et al. // Nanoscale. 2017. V. 9. № 20. P. 6711. https://doi.org/10.1039/C7NR01008G
- Zheng K., Han S., Zeng X. et al. // Adv. Mater. 2018. V. 30. № 30. P. 1801726. https://doi.org/10.1002/adma.201801726
- Guo Q., Wu J., Yang Y. et al. // J. Power Sources. 2019. V. 426. P. 178. https://doi.org/10.1016/j.jpowsour.2019.04.039
- Zhou Y., Wu S., Wang F. et al. // Chemosphere. 2020. V. 238. P. 124648. https://doi.org/10.1016/j.chemosphere.2019.124648
- Каримов Д.Н., Демина П.А., Кошелев А.В. и др. // Российские нанотехнологии. 2020. Т. 15. № 6. С. 699. https://doi.org/10.1134/S1992722320060114
- Huang R., Liu S., Huang J. et al. // Nanoscale. 2021. V. 13. № 9. P. 4812. https://doi.org/10.1039/D0NR09068A
- Yang Y., Huang J., Wei W. et al. // Nature Commun. 2022. V. 13. № 1. P. 3149. https://doi.org/10.1038/s41467-022-30713-w
- Федоров П.П. // Журн. неорган. химии. 1999 Т. 44. № 11. С. 1792.
- Mai H.X., Zhang Y.W., Si R. et al. // J. Am. Chem. Soc. 2006. V. 128. № 19. P. 6426. https://doi.org/10.1021/ja060212h
- Naccache R., Yu Q., Capobianco J.A. // Adv. Opt. Mater. 2015. V. 3. № 4. P. 482. https://doi.org/10.1002/adom.201400628
- Wang J., Deng R., MacDonald M.A. et al. // Nat. Mater. 2014. V. 13. № 2. P. 157. https://doi.org/10.1038/NMAT3804
- Rojas‐Gutierrez P.A., DeWolf C., Capobianco J.A. // Part. Part. Syst. Charact. 2016. V. 33. № 12. P. 865. https://doi.org/10.1002/ppsc.201600218
- Cheng T., Marin R., Skripka A., Vetrone F. // J. Am. Chem. Soc. 2018. V. 140. № 40. P. 12890. https://doi.org/10.1021/jacs.8b07086
- Wang J., Wang F., Xu J. et al. // C.R. Chim. 2010. V. 13. № 6–7. P. 731. https://doi.org/10.1016/j.crci.2010.03.021
- Liu S., An Z., Huang J., Zhou B. // Nano Res. 2023. V. 16. № 1. P. 1626. https://doi.org/10.1007/s12274-022-5121-9
- Kaczmarek A.M., Suta M., Rijckaert H. et al. // J. Mater. Chem. C. 2021. V. 9. № 10. P. 3589. https://doi.org/10.1039/d0tc05865c
- Zhang X., Wang M., Ding J. et al. // CrystEngComm. 2012. V. 14. № 24. P. 8357. https://doi.org/10.1039/c2ce26159f
- He E., Zheng H., Gao W. et al. // Mater. Res. Bull. 2013. V. 48. № 9. P. 3505. https://doi.org/10.1016/j.materresbull.2013.05.046
- Chen B., Wang F. // Inorg. Chem. Front. 2020. V. 7. № 5. P. 1067. https://doi.org/10.1039/C9QI01358J
- Zhang L., Wang Z., Lu Z. et al. // J. Nanosci. Nanotechnol. 2014. V. 14. № 6. P. 4710. https://doi.org/10.1166/jnn.2014.8641
- Jiang X., Cao C., Feng W. et al. // J. Mater. Chem. B. 2016. V. 4. № 1. P. 87. https://doi.org/10.1039/c5tb02023a
- Carl F., Birk L., Grauel B. et al. // Nano Res. 2021. V. 14. P. 797. https://doi.org/10.1007/s12274-020-3116-y
- Gao W., Zheng H., He E. et al. // J. Luminescence. 2014. V. 152. P. 44. https://doi.org/10.1016/j.jlumin.2013.10.046
- Li W., He Q., Xu J. et al. // J. Luminescence. 2020. V. 227. P. 117396. https://doi.org/10.1016/j.jlumin.2020.117396
- Zou Q., Huang P., Zheng W. et al. // Nanoscale. 2017. V. 9. № 19. P. 6521. https://doi.org/10.1039/C7NR02124K
- Liu J., Rijckaert H., Zeng M. et al. // Adv. Funct. Mater. 2018. V. 28. № 17. P. 1707365. https://doi.org/10.1002/adfm.201707365
- Dong J., Zhang J., Han Q. et al. // J. Luminescence. 2019. V. 207. P. 361. https://doi.org/10.1016/j.jlumin.2018.11.041
- Wang F., Deng R., Liu X. // Nat. Protoc. 2014. V. 9. № 7. P. 1634. https://doi.org/10.1038/nprot.2014.111
- Boyer J.C., Cuccia L.A., Capobianco J.A. // Nano Lett. 2007. V. 7. № 3. P. 847. https://doi.org/10.1021/nl070235+
- Koshelev A.V., Arkharova N.A., Khaydukov K.V. et al. // Crystals. 2022. V. 12. № 5. P. 599. https://doi.org/10.3390/cryst12050599
- Wang F., Han Y., Lim C.S. et al. // Nature. 2010. V. 463. № 7284. P. 1061. https://doi.org/10.1038/nature08777
- Liu Q., Sun Y., Yang T. et al. // J. Am. Chem. Soc. 2011. V. 133. № 43. P. 17122. https://doi.org/10.1021/ja207078s
- Damasco J.A., Chen G., Shao W. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 16. P. 13884. https://doi.org/10.1021/am503288d
- Huang X. // Opt. Mater. Express. 2016. V. 6. № 7. P. 2165. https://doi.org/10.1364/OME.6.002165
- Alyatkin S., Asharchuk I., Khaydukov K. et al. // Nanotechnology. 2016. V. 28. № 3. P. 035401. https://doi.org/10.1088/1361-6528/28/3/035401
- Gao D., Zhang X., Chong B. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. № 6. P. 4288. https://doi.org/10.1039/C6CP06402G
- Schroter A., Märkl S., Weitzel N., Hirsch T. // Adv. Funct. Mater. 2022. V. 32. № 26. P. 2113065. https://doi.org/10.1002/adfm.202113065
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді





