COMPARISON OF THE NUMERICAL AND ANALYTICAL CALCULATIONS OF THE RESOLUTION FUNCTION FOR A POWDER NEUTRON DIFFRACTOMETER

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The resolution of the high-intensity diffractometer, developed for the PIK reactor (Gatchina), is calculated both numerically and analytically. These two approaches give different results. All neutron trajectories calculated numerically are limited by the geometry of optical elements. Therefore, the diffraction profile has a trapezoidal shape, which can be seen well at large diffraction angles. Analytical formulas yield a Gaussian line profile. The difference in profiles leads to a difference in the resolution curves calculated numerically and analytically. This difference is especially pronounced for the diffractometers with medium and low resolution, optimized to the maximum intensity.

About the authors

K. A. Drozhzhov

St. Petersburg Nuclear Physics Institute named after B.P. Konstantinov, National Research Centre “Kurchatov Institute”, Gatchina, Leningrad oblast, 188300 Russia

Email: drozhzhov_ka@pnpi.nrcki.ru
Россия, Ленинградская обл., Гатчина

Yu. A. Kibalin

Laboratoire Léon Brillouin UMR12 CEA-CNRS, Bât. 563 CEA Saclay, 91191 Gif sur Yvette Cedex, France

Email: drozhzhov_ka@pnpi.nrcki.ru
France, Gif-sur-Yvette

V. V. Tarnavich

St. Petersburg Nuclear Physics Institute named after B.P. Konstantinov, National Research Centre “Kurchatov Institute”, Gatchina, Leningrad oblast, 188300 Russia

Email: drozhzhov_ka@pnpi.nrcki.ru
Россия, Ленинградская обл., Гатчина

I. V. Golosovsky

St. Petersburg Nuclear Physics Institute named after B.P. Konstantinov, National Research Centre “Kurchatov Institute”, Gatchina, Leningrad oblast, 188300 Russia

Author for correspondence.
Email: drozhzhov_ka@pnpi.nrcki.ru
Россия, Ленинградская обл., Гатчина

References

  1. Ковальчук М.В., Воронин В.В., Гаврилов С.В. и др. // Кристаллография. 2022. Т. 67. № 5. С.785. https://doi.org/10.31857/S0023476122050095
  2. Caglioti G., Paolioti A., Ricci F.P. // Nucl. Instrum. Methods. 1958. V. 3. P. 223. https://doi.org/10.1016/0369-643X(58)90029-X
  3. Popovici M. // Nucl. Instrum. Methods. 1965. V. 36. P. 179. https://doi.org/10.1016/0029-554X(65)90422-2
  4. Архипов Г.И., Садовничий В.А., Чубариков В.Н. Лекции по математическому анализу. М.: Высшая школа, 1999. 695 с.
  5. Cooper M.J., Nathans R. // Acta Cryst. 1967. V. 23 (3). P. 357. https://doi.org/10.1107/S0365110X67002816
  6. Bobrovskii V.I., Zhdakhin I.L. // J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques 2007. V. 1 (4). P. 72. https://doi.org/10.1134/S102745100704012X
  7. Hewat A.W. // Nucl. Instrum. Methods. 1975. V. 127. P. 361. https://doi.org/10.1016/S0029-554X(75)80006-1
  8. Leo D. Cussen // Nucl. Instrum. Methods. 2016. V. 821. P. 122. https://doi.org/10.1016/j.nima.2016.03.052
  9. Балагуров А.М., Голосовский И.В., Курбаков А.И. и др. // Дифрактометры на реакторе ПИК для решения фундаментальных и прикладных задач. РНСИ-КС, устные доклады. 2014. С. 50.
  10. Puente-Orench I., Clergeau J.F., Martínez S. et al. // J. Phys.: Conf. Ser. 2014. V. 549. P. 012003. https://doi.org/10.1088/1742-6596/549/1/012003
  11. Hansen T.C., Henry P.F., Fischer H.E. et al. // Meas. Sci. Technol. 2008. V. 19. P. 034001. https://doi.org/10.1088/0957-0233/19/3/034001
  12. Suard E., Hewat A. // Scientific Review: The Super-D2B project at the ILL. Neutron News, 2001. V. 12 (4). P. 30. https://doi.org/10.1080/10448630108245006
  13. Fischer P., Frey G., Koch M. et al. // Physica B. 2000. V. 276–278. P. 146. https://doi.org/10.1016/S0921-4526(99)01399-X
  14. Fischer P., Keller L., Schefer J. et al. // Neutron News. 2000. V. 11 (3). P. 19. https://doi.org/10.1080/10448630008233743
  15. Avdeev M., Hester J.R., Peterson V.K. et al. // Neutron News. 2009. V. 20 (4). P. 29. https://doi.org/10.1080/10448630903241100
  16. Studer A.J., Hagen M.E., Noakes T.J. // Physica B. 2006. V. 385–386. P. 1013. https://doi.org/10.1016/j.physb.2006.05.323
  17. Loopstra B.O. // Nucl. Instrum. Methods. 1966. V. 44. P. 181. https://doi.org/10.1016/0029-554X(66)90149-2
  18. Kibalin I.A., Gukasov A. // Phys. Rev. Res. 2019. № 1. 033100. https://doi.org/10.1103/PhysRevResearch.1.033100
  19. Gukasov A., Brown P.J. // J. Phys.: Condens. Matter. 2010. V. 22. P. 502201. https://doi.org/10.1088/0953-8984/22/50/502201
  20. Wright A.F., Berneron M., Heathman S.P. // Nucl. Instrum. Methods. 1981. V. 180. P. 650. https://doi.org/10.1016/0029-554X(81)90113-0
  21. Stone M.B., Niedziela J.L., Loguillo M.J. et al. // Rev. Sci. Instrum. 2014. V. 85. P. 085101. https://doi.org/10.1063/1.4891302
  22. Wannberg A., Mellergard A., Zetterstrom P. et al. // Neutron Research. 1999. V. 8. P. 133. https://doi.org/10.1080/10238169908200050
  23. Кибалин Ю.А., Голосовский И.В., Филимонов А.В. // Научно-технические ведомости СПбГПУ. 2008. Т. 56. С. 116. https://elibrary.ru/item.asp?id=12802818

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (653KB)
3.

Download (73KB)
4.

Download (53KB)
5.

Download (314KB)
6.

Download (116KB)
7.

Download (55KB)

Copyright (c) 2023 Russian Academy of Sciences