INVESTIGATION OF THE ULTRAFAST MAGNETIC DYNAMICS IN Co/Pt MULTILAYER STRUCTURES AND EXAMPLES OF OTHER STUDIES AT THE EUROPEAN XFEL FACILITY
- Authors: Lobanova E.Y.1,2, Suturin S.M.2, Molodtsov S.L.3, Romanov A.E.1
-
Affiliations:
- ITMO University, St. Petersburg, 197101 Russia
- Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
- European XFEL, Shenefeld, 22869 Germany dTU Bergakademie, Freiberg, 09599 Germany
- Issue: Vol 68, No 4 (2023)
- Pages: 621-627
- Section: НАНОМАТЕРИАЛЫ, КЕРАМИКА
- URL: https://cardiosomatics.ru/0023-4761/article/view/673425
- DOI: https://doi.org/10.31857/S0023476123600222
- EDN: https://elibrary.ru/ZEKOXB
- ID: 673425
Cite item
Abstract
The European X-ray Free-Electron Laser (EuXFEL) Facility is the leading international scientific center for studying the structure and properties of materials using coherent X-rays with high temporal and spatial resolution. The results of the collaboration of the EuXFEL experts and the researchers of the ITMO University in 2015–2022 are briefly described. The unique possibilities of the EuXFEL are demonstrated by an example of studying the ultrafast magnetic dynamics by the researchers of the ITMO University in 2019.
About the authors
E. Yu. Lobanova
ITMO University, St. Petersburg, 197101 Russia; Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
Email: elobanova@itmo.ru
Россия, Санкт-Петербург; Россия, Санкт-Петербург
S. M. Suturin
Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
Email: alexey.romanov@niuitmo.ru
Россия, Санкт-Петербург
S. L. Molodtsov
European XFEL, Shenefeld, 22869 Germany dTU Bergakademie, Freiberg, 09599 Germany
Email: alexey.romanov@niuitmo.ru
Германия, Шенефельд
A. E. Romanov
ITMO University, St. Petersburg, 197101 Russia
Author for correspondence.
Email: alexey.romanov@niuitmo.ru
Россия, Санкт-Петербург
References
- Koopmans B., Malinowski G., Dalla Longa F. et al. // Nat. Mater. 2010. V. 9. P. 259. https://doi.org/10.1038/nmat2593
- Kirilyuk A., Kimel A.V., Rasing T. // Rep. Prog. Phys. 2013. V. 76. P. 026501. https://doi.org/10.1088/0034-4885/76/2/026501
- Beaurepaire E., Merle J., Daunois A. et al. // Phys. Rev. Lett. 1996. V. 76. P. 4250. https://doi.org/10.1103/PhysRevLett.76.4250
- Stanciu C.D., Hansteen F., Kimelet A.V. et al. // Phys. Rev. Lett. 2007. V. 99. P. 047601. https://doi.org/10.1103/PhysRevLett.99.047601
- Zhang Y., Chen S., Cai Y. et al. // Engineering. 2020. https://doi.org/10.1016/j.eng.2020.06.019
- Lambert C.-H., Mangin S., Varaprasad B.S.D.Ch.S. et al. // Science. 2014. V. 345. P. 1337. https://doi.org/10.1126/science.1253493
- John R., Berritta M., Hinzke D. et al. // Sci. Rep. 2017. V. 7. P. 4114. https://doi.org/10.1038/s41598-017-04167-w
- Vahaplar K., Kalashnikova A.M., Kimel A.V. et al. // Phys. Rev. Lett. 2009. V. 103. P. 117201. https://doi.org/10.1103/PhysRevLett.103.117201
- Mangin S., Gottwald M., Lambert C.H. et al. // Nat. Mater. 2014. V. 13 (3). P. 286. https://doi.org/10.1038/nmat3864
- Radu I., Vahaplar K., Stamm C. et al. // Nature. 2011. V. 472 (7342). P. 205. https://doi.org/10.1038/nature09901
- Ostler T.A., Barker J., Evans R.F.L. et al. // Nat. Commun. 2012. V. 3 (1). P. 1. https://doi.org/10.1038/ncomms1666
- Gorchon J., Yang Y., Bokor J. et al. // Phys. Rev. B. 2016. V. 94. P. 020409. https://doi.org/10.1103/PhysRevB.94.020409
- Ellis M.O.A., Fullerton E.E., Chantrell R.W. // Sci. Rep. 2016. V. 6. P. 30522. https://doi.org/10.1038/srep30522
- Hadri E., Pirro M.S., Lambert P. et al. // Phys Rev. B. 2016. V. 94 (6). P. 064412. https://doi.org/10.1103/PhysRevB.94.064412
- Medapalli R., Afanasiev D., Kim D.K. et al. // Phys Rev. B. 2017. V. 96 (22). P. 224421. https://doi.org/10.1103/PhysRevB.96.224421
- El Hadri M.S., Hehn M., Mangin S. et al. // J. Phys. D: Appl. Phys. 2018. V. 51. P. 215054. https://doi.org/10.1088/1361-6463/aabf2b
- Pfau B., Schaffert S., Müller L. et al. // Nat. Commun. 2012. V. 3. P. 1100. https://doi.org/10.1038/ncomms2108
- Iacocca E., Liu T.-M., Reid A.H. et al. // Nat. Commun. 2019. V. 10. P. 1756. https://doi.org/10.1038/s41467-019-09577-0
- Porro M., Andricek L., Aschauer S. et al. // IEEE Trans. Nucl. Sci. 2021. V. 68. P. 1334. https://doi.org/10.1109/TNS.2021.3076602
- Sant T., Ksenzov D., Skorb E.V. et al. // Sci. Rep. 2017. V. 7. P. 15064. https://doi.org/10.1039/c6cp07456a
- Imoro N., Shilovskikh V.V., Nesterov P.V. et al. // ACS Omega. 2021. V. 6 (27). P. 17267. https://doi.org/10.1021/acsomega.1c01124
- Shilovskikh V.V., Timralieva A.A., Skorb E.V. et al. // Chem. A Europ. J. 2020. V. 26 (70). P. 16603. https://doi.org/10.1002/chem.202002947
- Shilovskikh, V., Timraliev A., Skorb E.V. et al. // Appl. Magn. Res. 2020. https://doi.org/10.1007/s00723-020-01254-6
- Orekhov N., Kondratyuk N., Skorb E.V. et al. // Cryst. Growth. Des. 2021. V. 21 (4). P.1984. https://doi.org/10.1021/acs.cgd.0c01285
- Mancuso C.A., Hickstein D.D., Grychtol P. et al. // Phys. Rev. A. 2015. V. 91. P. 031402. https://doi.org/10.1103/PhysRevA.91.031402
- Milošević D.B., Becker W. // Phys. Rev. A. 2016. V. 93. P. 063418. https://doi.org/10.1103/PhysRevA.93.063418
- Mancuso C.A., Hickstein D.D., Dorney K.M. et al. // Phys. Rev. A. 2016. V. 93. P. 053406. https://doi.org/10.1103/PhysRevA.93.053406
- Karlovets D.V., Serbo V.G., Surzhykov A. // Phys. Rev. A. 2021. V. 104 (2). P. 023101. https://doi.org/10.1103/PhysRevA.104.023101
- Volotka A., Samoilenko D., Surzhykov A. et al. // Ann. Phys. 2022. P. 2100252. https://doi.org/10.48550/arXiv.2212.06311
- Polimeno P., Magazzu A., Marago O.M. et al. // J. Quant. Spec. Radiat. Trans. 2018. V. 218. P. 131. https://doi.org/10.1016/j.jqsrt.2018.07.013
- Müller J., Scheer M., Schmid P. // Phys. Rev. Lett. 2013. V. 111. P. 034801. https://doi.org/10.1103/PhysRevLett.111.034801
Supplementary files
