STRUCTURAL COMPLEXITY OF MOLECULAR, CHAIN, AND LAYERED CRYSTAL STRUCTURES OF NATURAL AND SYNTHETIC ARSENIC SULFIDES
- Авторлар: Banaru D.A.1, Aksenov S.M.2, Yamnova N.A.3, Banaru A.M.2,3
- 
							Мекемелер: 
							- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, 119334 Russia
- Kola Science Centre, Russian Academy of Sciences, Apatity, Murmansk oblast, 184209 Russia
- Moscow State University, Moscow, 119991 Russia
 
- Шығарылым: Том 68, № 2 (2023)
- Беттер: 209-222
- Бөлім: СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://cardiosomatics.ru/0023-4761/article/view/673490
- DOI: https://doi.org/10.31857/S0023476123020030
- EDN: https://elibrary.ru/BPUACB
- ID: 673490
Дәйексөз келтіру
Аннотация
A ladder-wise calculation scheme has been developed for the structural complexity of heterodesmic crystal structures, with crystal interpreted as a system of contacting molecules, chains, and layers. In the last stage of ladder-wise calculation the structural complexity of the main motif is summed with the complexity of the contacts beyond the main motif in correspondence with the strong additivity rule. The application potential of the scheme is demonstrated, and the calculation results for the crystal structures of natural and synthetic arsenic sulfides are presented. The coordination of molecules and chains that is necessary for calculating the complexity of contacts beyond the main motif is determined by the method of Voronoi–Dirichlet polyhedra.
Негізгі сөздер
Авторлар туралы
D. Banaru
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, 119334 Russia
														Email: banaru@geokhi.ru
				                					                																			                												                								Россия, Москва						
S. Aksenov
Kola Science Centre, Russian Academy of Sciences, Apatity, Murmansk oblast, 184209 Russia
														Email: aks.crys@gmail.com
				                					                																			                												                								Россия, Апатиты						
N. Yamnova
Moscow State University, Moscow, 119991 Russia
														Email: aks.crys@gmail.com
				                					                																			                												                								Россия, Москва						
A. Banaru
Kola Science Centre, Russian Academy of Sciences, Apatity, Murmansk oblast, 184209 Russia; Moscow State University, Moscow, 119991 Russia
							Хат алмасуға жауапты Автор.
							Email: aks.crys@gmail.com
				                					                																			                												                								Россия, Апатиты; Россия, Москва						
Әдебиет тізімі
- Banaru A.M., Aksenov S.M., Krivovichev S.V. // Symmetry (Basel). 2021. V. 13. P. 1399. https://doi.org/10.3390/sym13081399
- Krivovichev S.V. // Angew. Chemie – Int. Ed. 2014. V. 53. P. 654. https://doi.org/10.1002/anie.201304374
- Batsanov A.S. // Acta Cryst. E. 2018. V. 74. P. 570. https://doi.org/10.1107/S2056989018005339
- Spackman M.A., Jayatilaka D. // CrystEngCommun. 2009. V. 11. P. 19. https://doi.org/10.1039/B818330A
- Blatov V.A., Shevchenko A.P., Serenzhkin V.N. // Acta Cryst. A. 1995. V. 51. P. 909. https://doi.org/10.1107/S0108767395006799
- Blatov V.A. // Cryst. Rev. 2004. V. 10. P. 249. https://doi.org/10.1080/08893110412331323170
- Shevchenko A.P., Blatov V.A. // Struct. Chem. 2021. V. 32. P. 507. https://doi.org/10.1007/s11224-020-01724-4
- Banaru A.M., Banaru D.A. // J. Struct. Chem. 2020. V. 61. P. 1485. https://doi.org/10.1134/S0022476620100017
- Sabirov D.S., Shepelevich I.S. // Entropy. 2021. V. 23. https://doi.org/10.3390/e23101240
- Hornfeck W. // Acta Cryst. A. 2020. V. 76. P. 534. https://doi.org/10.1107/S2053273320006634
- Banaru A.M., Aksenov S.M. // Symmetry (Basel). 2022. V. 14. P. 220. https://doi.org/10.3390/sym14020220
- Banaru D.A., Banaru A.M., Aksenov S.M. // J. Struct. Chem. 2022. V. 63. https://doi.org/10.26902/JSC_id96300
- Lloyd S. // IEEE Control Syst. Mag. 2001. V. 21. P. 7. https://doi.org/10.1109/MCS.2001.939938
- Nagaraj N., Balasubramanian K. // Eur. Phys. J. Spec. Top. 2017. V. 226. P. 3251. https://doi.org/10.1140/epjst/e2016-60347-2
- Zefirov Y.V., Zorky P.M. // Russ. Chem. Rev. 1995. V. 64. P. 415. https://doi.org/10.1070/rc1995v064n05abeh000157
- Bader R.F.W. // Acc. Chem. Res. 1985. V. 18. P. 9. https://doi.org/10.1021/ar00109a003
- Jabłoński M. // ChemistryOpen. 2019. V. 8. P. 497. https://doi.org/https://doi.org/10.1002/open.201900109
- Banaru A.M. // Moscow Univ. Chem. Bull. 2019. V. 74. P. 101. https://doi.org/10.3103/S0027131419030039
- van Eijck B.P., Kroon J. // Acta Cryst. B. 2000. V. 56. P. 535. https://doi.org/10.1107/S0108768100000276
- Banaru A.M. // Moscow Univ. Chem. Bull. 2009. V. 64. P. 80. https://doi.org/10.3103/S0027131409020023
- Belsky V.K., Zorky P.M. // Acta Cryst. A. 1977. V. 33. P. 1004.
- Talis A.L., Everstov A.A., Kraposhin V.S., Simich-Lafitskii N.D. // Met. Sci. Heat Treat. 2021. V. 62. P. 725. https://doi.org/10.1007/s11041-021-00629-1
- Talis A.L., Kraposhin V.S., Arestov V. // Met. Sci. Heat Treat. 2022. V. 63. P. 618. https://doi.org/10.1007/s11041-022-00738-5
- Talis A.L., Kraposhin V.S., Everstov A.A. // Met. Sci. Heat Treat. 2022. V. 64. P. 338. https://doi.org/10.1007/s11041-022-00811-z
- Maleev A.V., Gevorgyan A.A., Potekhin K.A. // J. Struct. Chem. 2018. V. 59. P. 455. https://doi.org/10.1134/S0022476618020294
- Mackenzie C.F., Spackman P.R., Jayatilaka D., Spackman M.A. // IUCrJ. 2017. V. 4. P. 575. https://doi.org/10.1107/S205225251700848X
- Lord E.A., Banaru A.M. // Moscow Univ. Chem. Bull. 2012. V. 67. P. 50. https://doi.org/10.3103/S0027131412020034
- Bonazzi P., Bindi L. // Z. Krist. - Cryst. Mater. 2008. V. 223. P. 132. 10.1524/zkri.2008.0011' target='_blank'>https://doi.org/doi: 10.1524/zkri.2008.0011
- Gibbs G.V., Wallace A.F., Downs R.T. et al. // Phys. Chem. Mineral. 2011. V. 38. P. 267. https://doi.org/10.1007/s00269-010-0402-3
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576. https://doi.org/10.1021/cg500498k
- O’Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. // Acc. Chem. Res. 2008. V. 41. P. 1782. https://doi.org/10.1021/ar800124u
- The Samara Topological Data Center “TopCryst,” available at https://topcryst.com/, n.d.
- Zorky P.M. // J. Mol. Struct. 1996. V. 374. P. 9.
- Madelung O., Rössler U., Schulz M. 2010 http//www.springermaterials.com
- Kyono A. // Am. Mineral. 2009. V. 94. P. 451. 10.2138/am.2009.3075' target='_blank'>https://doi.org/doi: 10.2138/am.2009.3075
- Lepore G.O., Ballaran T.B., Nestola F. et al. // Mineral. Mag. 2012. V. 76. P. 963. https://doi.org/10.1180/minmag.2012.076.4.12
- Kutoglu A. // Z. Anorg. Allg. Chem. 1976. V. 419. P. 176. https://doi.org/https://doi.org/10.1002/zaac.19764190211
- Bonazzi P., Menchetti S., Pratesi G. // Am. Mineral. 1995. V. 80. P. 400. https://doi.org/10.2138/am-1995-3-422
- Bindi L., Popova V., Bonazzi P. // Can. Mineral. 2003. V. 41. P. 1463. https://doi.org/10.2113/gscanmin.41.6.1463
- Bindi L., Bonazzi P. // Am. Mineral. 2007. V. 92. P. 617. 10.2138/am.2007.2332' target='_blank'>https://doi.org/doi: 10.2138/am.2007.2332
- Pratesi G., Zoppi M. // Am. Mineral. 2015. V. 100. P. 1222. 10.2138/am-2015-5045' target='_blank'>https://doi.org/doi: 10.2138/am-2015-5045
- Gavezzotti A., Demartin F., Castellano C., Campostrini I. // Phys. Chem. Miner. 2013. V. 40. P. 175. https://doi.org/10.1007/s00269-012-0559-z
- Bonazzi P., Lepore G.O., Bindi L. // Eur. J. Mineral. 2016. V. 28. P. 147. https://doi.org/10.1127/ejm/2015/0027-2474
- Mullen D.J.E., Nowacki W. // Z. Krist. 1972. B. 136. S. 48. 10.1524/zkri.1972.136.1-2.48' target='_blank'>https://doi.org/doi: 10.1524/zkri.1972.136.1-2.48
- Brazhkin V.V., Bolotina N.B., Dyuzheva T.I. et al. // CrystEngCommun. 2011. V. 13. P. 2599. https://doi.org/10.1039/C0CE00861C
- Bolotina N.B., Brazhkin V.V., Dyuzheva T.I. et al. // JETP Lett. 2014. V. 98. P. 539. https://doi.org/10.1134/S0021364013220025
- Siidra O.I., Zenko D.S., Krivovichev S. V // Am. Mineral. 2014. V. 99. P. 817.
- Aroyo M.I., Perez-Mato J.M., Orobengoa D. et al. // Bulg. Chem. Commun. 2011. V. 43. P. 183.
- McKinnon J.J., Mitchell A.S., Spackman M.A. // Chem. – A Eur. J. 1998. V. 4. P. 2136. https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G
- Mckinnon J.J., Mark A., Anthony S. // Acta Cryst. B. 2004. V. 60. P. 627. https://doi.org/10.1107/S0108768104020300
- Meyer A.Y. // Chem. Soc. Rev. 1986. V. 15. P. 449. https://doi.org/10.1039/CS9861500449
- Jelsch C., Ejsmont K., Huder L. // IUCrJ. 2014. V. 1. P. 119. https://doi.org/10.1107/S2052252514003327
- O’Keeffe M., Treacy M.M.J. // Symmetry (Basel). 2022. V. 14. P. 822. https://doi.org/10.3390/sym14040822
- Shpotyuk O., Hyla M., Shpotyuk Y. et al. // Comput. Mater. Sci. 2021. V. 198. P. 110715. https://doi.org/https://doi.org/10.1016/j.commatsci.2021.110715
- Pidcock E., Motherwell W.D.S., Cole J.C. // Acta Cryst. B. 2003. V. 59. P. 634. https://doi.org/10.1107/S0108768103012278
- Carugo O., Blatova O.A., Medrish E.O. et al. // Sci. Rep. 2017. V. 7. P. 1. https://doi.org/10.1038/s41598-017-12699-4
- Eon J.G. // Acta Cryst. A. 2016. V. 72. P. 376. https://doi.org/10.1107/S2053273316003867
- Krivovichev S.V. // Acta Cryst. B. 2016. V. 72. P. 274. https://doi.org/10.1107/s205252061501906x
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Рұқсат ақылы немесе тек жазылушылар үшін
		                                							Рұқсат ақылы немесе тек жазылушылар үшін
		                                					









