STRUCTURAL BIOINFORMATICS STUDY OF THE STRUCTURAL BASIS OF SUBSTRATE SPECIFICITY OF PURINE NUCLEOSIDE PHOSPHORYLASE FROM THERMUS THERMOPHILUS
- Autores: Garipov I.F.1, Timofeev V.I.1,2, Zayats E.A.3, Abramchikc Y.A.3, Kostromina M.A.3, Konstantinova I.D.3, Esipov R.S.3
- 
							Afiliações: 
							- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
- National Research Centre “Kurchatov Institute,” Moscow, 123182 Russia
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
 
- Edição: Volume 68, Nº 2 (2023)
- Páginas: 268-275
- Seção: STRUCTURE OF MACROMOLECULAR COMPOUNDS
- URL: https://cardiosomatics.ru/0023-4761/article/view/673503
- DOI: https://doi.org/10.31857/S0023476123010101
- EDN: https://elibrary.ru/GAXNVC
- ID: 673503
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Molecular dynamics simulations were performed for wild-type purine nucleoside phosphorylase in complexes with two substrates (adenosine and guanosine). The MD simulations were also performed for the mutant form of the enzyme with the same substrates. The free energy changes upon the formation of the complexes were evaluated from the molecular dynamics trajectories by the MM-GBSA method.
Palavras-chave
Sobre autores
I. Garipov
Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
														Email: ildar.garipov.f@gmail.com
				                					                																			                												                								Россия, Москва						
V. Timofeev
Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia; National Research Centre “Kurchatov Institute,” Moscow, 123182 Russia
														Email: ildar.garipov.f@gmail.com
				                					                																			                												                								Россия, Москва; Россия, Москва						
E. Zayats
Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
														Email: ildar.garipov.f@gmail.com
				                					                																			                												                								Россия, Москва						
Yu. Abramchikc
Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
														Email: ildar.garipov.f@gmail.com
				                					                																			                												                								Россия, Москва						
M. Kostromina
Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
														Email: ildar.garipov.f@gmail.com
				                					                																			                												                								Россия, Москва						
I. Konstantinova
Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
														Email: ildar.garipov.f@gmail.com
				                					                																			                												                								Россия, Москва						
R. Esipov
Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
							Autor responsável pela correspondência
							Email: ildar.garipov.f@gmail.com
				                					                																			                												                								Россия, Москва						
Bibliografia
- Timofeev V.I., Fateev I.V., Kostromina M.A. et al. // J. Biomol. Struct. Dyn. 2020. V. 40. P. 1. https://doi.org/10.1080/07391102.2020.1848628
- Tomoike F., Kuramitsu S., Masui R. // Extremophiles. 2013. V. 17. P. 505. https://doi.org/10.1007/s00792-013-0535-7
- Погосян Л.Г., Акопян Ж.И. // Биомедицинская химия. 2013. Т. 59. № 5. С. 483. https://doi.org/10.18097/pbmc20135905483
- Salomon-Ferrer R., Case D.A., Walker R.C. // WIREs Comput. Mol. Sci. 2013. V. 3. P. 198. https://doi.org/10.1002/wcms.1121
- Case D.A., Cheatham T.E., III, Darden T. et al. // J. Comput. Chem. 2005. V. 26. P. 1668. https://doi.org/10.1002/jcc.20290
- Maier J.A., Martinez C., Kasavajhala K. et al. // J. Chem. Theory Comput. 2015. V. 11. P. 3696. https://doi.org/10.1021/acs.jctc.5b00255
- Salomon-Ferrer R., Goetz A.W., Poole D. et al. // J. Chem. Theory Comput. 2013. V. 9. P. 3878. https://doi.org/10.1021/ct400314y
- Jorgensen W. L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926. https://doi.org/10.1063/1.445869
- Allen M.P., Tildesley D.J. Computer simulation of liquids. New York: Oxford university press, 1991. https://doi.org/10.2307/2938686
- Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. P. 3684. https://doi.org/10.1063/1.448118
- Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089. https://doi.org/10.1063/1.464397
- Kollman P.A., Massova I., Reyes C. et al. // Acc. Chem. Res. 2000. V. 33. P. 889. https://doi.org/10.1021/ar000033j
- Srinivasan J., Trevathan M.W., Beroza P. et al. // Theor. Chem. Acc. 1999. V. 101. P. 426. https://doi.org/10.1007/s002140050460
- Miller B.R., McGee T.D., Swails J.M. et al. // J. Chemical Theory and Computation. 2012. V. 8. P. 3314. https://doi.org/10.1021/ct300418h
- Onufriev A., Bashford D., Case D.A. // Proteins. 2004. V. 55. P. 383. https://doi.org/10.1002/prot.20033
- Schrödinger L.L.C. The PyMOL Molecular Graphics System, Version 2.0
- Mikhailopulo I.A., Miroshnikov A.I. // Acta Naturae. 2010. V. 2. P. 36. https://doi.org/10.32607/20758251-2017-9-2-47-58
- Fateev I.V., Kostromina M.A., Abramchik Y.A. et al. // Biomolecules. 2021. V. 11. P. 586. https://doi.org/10.3390/biom11040586
- Roy B., Depaix A., Périgaud C. et al. // Chem. Rev. 2016. V. 116. P. 7854. https://doi.org/10.1021/acs.chemrev.6b00174
- Almendros M., Berenguer J., Sinisterra J.V. // Appl. Environmental Microbiology. 2012. V. 78. P. 3128. https://doi.org/10.1128/AEM.07605-11
- Fateev I.V., Kharitonova M.I., Antonov K.V. et al. // Chemistry. 2015. V. 21. P. 13401. https://doi.org/10.1002/chem.201501334
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








