OPTICAL ISOLATORS ON SURFACE ELECTROMAGNETIC WAVES IN PT-SYMMETRIC GYROTROPIC STRUCTURES. I: SPECIAL CASES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is shown that a twinned PT-symmetric gyrotropic structure, composed of semi-infinite media with oppositely directed gyration vectors, lying in the interface plane, exhibits valve properties for surface electromagnetic waves. More specifically, a surface wave can be excited in one direction lying in the interface plane, which is perpendicular to the gyration vectors, and cannot be excited in the opposite direction. This surface electromagnetic wave is linearly polarized, and its characteristic penetration depth is inversely proportional to the small gyration parameter.

About the authors

A. N. Furs

Belarusian State University, Minsk, 220030 Belarus

Email: FursAN@bsu.by
Белоруссия, Минск

A. V. Novitsky

Belarusian State University, Minsk, 220030 Belarus

Author for correspondence.
Email: Novitsky@bsu.by
Белоруссия, Минск

References

  1. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. Аграновича В.М., Миллса Д.Л. М.: Наука, 1985. 526 с.
  2. Дьяконов М.И. // ЖЭТФ. 1988. Т. 94. № 4. С. 119.
  3. Аверкиев Н.С., Дьяконов М.И. // Оптика и спектроскопия. 1990. Т. 68. № 5. С. 1118.
  4. Takayama O., Crasovan L-C., Artigas D., Torner L. // Phys. Rev. Lett. 2009. V. 102. P. 043903. https://doi.org/10.1103/PhysRevLett.102.043903
  5. Даринский А.Н. // Кристаллография. 2001. Т. 46. № 5. С. 916. https://doi.org/10.1134/1.1405874
  6. Альшиц В.И., Любимов В.Н. // ФТТ. 2002. Т. 44. № 10. С. 1895. https://doi.org/10.1134/1.1514793
  7. Polo J.A. Jr., Lakhtakia A. // Laser Photonics Rev. 2011. V. 5. № 2. P. 234. https://doi.org/10.1002/lpor.200900050
  8. Mackay T.G., Zhou C., Lakhtakia A. // Proc. R. Soc. A. 2019. V. 475. P. 20190317. https://doi.org/10.1098/rspa.2019.0317
  9. Furs A.N., Barkovsky L.M. // Electromagnetics. 2008. V. 28. № 3. P. 146. https://doi.org/10.1080/02726340801921452
  10. Furs A.N., Barkovsky L.M. // J. Phys. A. 2007. V. 40. P. 309. https://doi.org/10.1088/1751-8113/40/2/010
  11. Федоров Ф.И. Теория гиротропии. Минск: Наука и техника, 1976. 456 с.
  12. Константинова А.Ф., Гречушников Б.Н., Бокуть Б.В., Валяшко Е.Г. Оптические свойства кристаллов. Минск: Наука и техника, 1995. 302 с.
  13. Гиргель С.С. Основы теоретической кристаллооптики магнитоупорядоченных сред. Гомель: ГГУ им. Ф. Скорины, 2008. 200 с.
  14. Зябловский А.А., Виноградов А.П., Пухов А.А. и др. // Успехи физ. наук. 2014. Т. 184. № 11. С. 1177. https://doi.org/10.3367/UFNe.0184.201411b.1177
  15. El-Ganainy R., Makris K.G., Khajavikhan M. et al. // Nat. Phys. 2018. V. 14. P. 11. https://doi.org/10.1038/nphys4323
  16. Feng L., El-Ganainy R., Ge L. // Nat. Photonics. 2017. V. 11. P. 752. https://doi.org/10.1038/s41566-017-0031-1
  17. Özdemir Ş.K., Rotter S., Nori F., Yang L. // Nat. Mater. 2019. V. 18. P. 783. https://doi.org/10.1038/s41563-019-0304-9
  18. Droulias S., Katsantonis I., Kafesaki M. et al. // Phys. Rev. Lett. 2019. V. 122. P. 213201. https://doi.org/10.1103/PhysRevLett.122.213201
  19. Katsantonis I., Droulias S., Soukoulis C.M. et al. // Phys. Rev. B. 2022. V. 105. P. 174112. https://doi.org/10.1103/PhysRevB.105.174112
  20. Coppolaro M., Moccia M., Castaldi G. et al. // IEEE Trans. Microw. Theory Techn. 2021. V. 69. № 4. P. 2060. https://doi.org/10.1109/TMTT.2021.3057632
  21. Фурс А.Н., Барковский Л.М. // ЖТФ. 2003. Т. 74. № 4. С. 9. https://doi.org/10.1134/1.1568477
  22. Darinskii A.N. // Phys. Rev. A. 2021. V. 103. P. 033501. https://doi.org/10.1103/PhysRevA.103.033501
  23. Darinskii A.N. // Phys. Rev. A. 2021. V. 104. P. 023507. https://doi.org/10.1103/PhysRevA.104.023507

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (245KB)

Copyright (c) 2023 Russian Academy of Sciences