DIRECTOR DISTRIBUTION IN A CLC HYBRID CELL WITH A SMALL HELICOIDAL PITCH
- Autores: Shtykov N.M.1, Palto S.P.1, Umanskii B.A.1, Rybakov D.O.1, Simdyankin I.V.1
- 
							Afiliações: 
							- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
 
- Edição: Volume 68, Nº 1 (2023)
- Páginas: 77-85
- Seção: ЖИДКИЕ КРИСТАЛЛЫ
- URL: https://cardiosomatics.ru/0023-4761/article/view/673551
- DOI: https://doi.org/10.31857/S0023476122060212
- EDN: https://elibrary.ru/DMUGPI
- ID: 673551
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Laser light emission in dye-doped chiral liquid crystals (CLCs) has been experimentally demonstrated for the homeotropic–planar (hybrid) orientation. A numerical simulation of this structure showed that the helicoid (helix) pitch period in CLC in the hybrid cell and the director distribution depend significantly on the anchoring energy at the homeotropic sample boundary. The anchoring energy plays the role of a factor facilitating the CLC helix unwinding. The lower anchoring energy, the smaller the pitch is and the closer to the natural CLC pitch it is. In this case, the length of the “screw"-type structure near the homeotropic cell boundary decreases. Thus, as the anchoring energy at the hybrid-cell homeotropic boundary decreases, the director distribution in the cell approaches the distribution in the planar (Grandjean) cell. This is confirmed by the laser light emission in the same spectral range as in the planar cell.
Palavras-chave
Sobre autores
N. Shtykov
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
														Email: nshtykov@mail.ru
				                					                																			                												                								Россия, Москва						
S. Palto
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
														Email: serguei.palto@gmail.com
				                					                																			                												                								Россия, Москва						
B. Umanskii
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
														Email: nshtykov@mail.ru
				                					                																			                												                								Россия, Москва						
D. Rybakov
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
														Email: nshtykov@mail.ru
				                					                																			                												                								Россия, Москва						
I. Simdyankin
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
							Autor responsável pela correspondência
							Email: nshtykov@mail.ru
				                					                																			                												                								Россия, Москва						
Bibliografia
- de Gennes P.G., Prost J. The physics of liquid crystals. 2nd edition. Oxford: Clarendon Press, 1993. 614 p.
- Chilaya G. Cholesteric liquid crystals: properties and applications. Saarbrucken: Lambert Academic Publishing, 2013. 112 c.
- Kopp V.I., Zhang Z.-Q., Genack A.Z. // Prog. Quantum Electron. 2003. V. 27. P. 369. https://doi.org/10.1016/S0079-6727(03)00003-X
- Kogelnik H., Shank C.V. // J. Appl. Phys. 1972. V. 43. P. 2327. https://doi.org/10.1063/1.1661499
- Belyakov V.A. // J. Lasers Opt. Photon. 2017. V. 4. P. 153. https://doi.org/10.4172/2469-410X.1000153
- Il'chishin I.P., Tikhonov E.A., Shpak M.T., Doroshkin A.A. // JETP Lett. 1976. V. 24. P. 303.
- Coles H., Morris S. // Nat. Photon. 2010. V. 4. P. 676.
- Blinov L.M., Bartolino R. // Liquid Crystal Microlasers. Transworld Research Network, 2010. P. 270.
- Palto S.P. // JETP. 2006. V. 103. P. 472.
- Palto S.P., Shtykov N.M., Umanskii B.A., Barnik M.I. // J. Appl. Phys. 2012. V. 112. P. 013105. https://doi.org/10.1063/1.4723641
- Ortega J., Folcia C.L., Etxebarria J. // Materials. 2018. V. 11. https://doi.org/10.3390/ma11010005
- Nastishin Yu.A., Dudok T.H., Hrabchak V.I. et al. // Ukr. J. Phys. Opt. 2017. V. 18. P. 121. https://doi.org/10.3116/16091833/18/3/121/2017
- Dozov I., Penchev I. // J. Phys. France. 1986. V. 47. P. 373. https://doi.org/10.1051/jphys:01986004703037300
- Lewis M.R., Wiltshire M.C.K. // Appl. Phys. Lett. 1987. V. 51. P. 1197. https://doi.org/10.1063/1.98731
- Lin Ch.-H., Chiang R.-H., Liu Sh.-H. et al. // Opt. Express. 2012. V. 20. P. 26837. https://doi.org/10.1364/OE.20.026837
- Nose T., Miyanishi T., Aizawa Y. et al. // Jpn. J. Appl. Phys. 2010. V. 49. P. 051701.
- Shiyanovskii S.V., Lavrentovich O.D. // SID Intnl. Digest Tech. Papers. 2003. V. 34. P. 664.
- Hsiao Yu-Ch., Timofeev I.V., Zyryanov V.Ya., Lee W. // Opt. Mat. Express. 2015. V. 5. P. 2715. https://doi.org/10.1364/OME.5.002715
- Блинов Л.М., Раджабов Д.З., Собачюс Д.Б., Яблонский С.В. // ЖЭТФ. 1991. Т. 53. С. 223.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







