Minerals of the hydrotalcite group: crystal chemistry and a new perspective on 'old' minerals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper summarizes the data on the structures of hydrotalcite group minerals – layered double hydroxides with the general formula M2+ 6 M3+ 2 (OH)16Am2/m·4H2O (М2+ = Mg2+, Ni2+; М3+ = Al3+, Fe3+, Cr3+, Mn3+, Co3+; A = CO32–, Cl and OH). It is shown that all of them crystallize with the structure of 3R- and 2H-polytypes without the formation of superstructures. The a unit-cell parameter is in the range of 3.05–3.13 Å. The characteristic interlayer distances (d00n) for the members of the group with carbonate and chloride anions are ~7.80 and 8.04 Å, respectively (c = d00n × 2 for 2H and c = d00n × 3 for 3R). Three hydrotalcite group minerals should be reconsidered taking into account new crystallographic data and regularities: takovite and droninoite most likely correspond to minerals of the quintinite group with M2+ : M3+ = 2 : 1, rather than to minerals of the hydrotalcite group, and the data on reevesite indicate that this name could describe two minerals with M2+ : M3+ = 3 : 1 and 2 : 1.

Full Text

Restricted Access

About the authors

Е. S. Zhitova

Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: zhitova_es@mail.ru
Russian Federation, Petropavlovsk-Kamchatsky

S. V. Krivovich

St. Petersburg State University; Kola Scientific Center RAS

Email: zhitova_es@mail.ru
Russian Federation, St. Petersburg; Apatity

I. V. Pekov

Lomonosov Moscow State University

Email: zhitova_es@mail.ru
Russian Federation, Moscow

A. А. Zolotarev

Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences; St. Petersburg State University

Email: zhitova_es@mail.ru
Russian Federation, Petropavlovsk-Kamchatsky; St. Petersburg

References

  1. Hochstetter C. // J. Prakt. Chem. 1842. V. 27. P. 375.
  2. Mills S.J., Christy A.G., Schmitt R. // Mineral. Mag. 2016. V. 80. P. 1023. https://doi.org/10.1180/minmag.2016.080.040
  3. Igelström L.J. // Öfversigt af Kongl. vetenskaps-akademiens förhandlingar. 1866. V. 22 (9). P. 605.
  4. Petterd W.F. // Catalog of the Minerals of Tasmania. 3rd Edition, J. Vail Hobart. 1910. P. 167.
  5. Dunn P.J., Peacor D.R., Palmer T.D. // Am. Mineral. 1979. V. 64. P. 127.
  6. Kasatkin A.V., Britvin S.N., Krzhizhanovskaya M.G. et al. // Mineral. Mag. 2022. V. 86. P. 841. https://doi.org/10.1180/mgm.2022.65
  7. White J.S., Henderson E.P., Mason B. // Am. Mineral. 1967. V. 52. P. 1190.
  8. de Waal S.A., Viljoen E.A. // Am. Mineral. 1971. V. 56. P. 1077.
  9. Maksimović Z. // Zapisnici SGD. 1955. V. 1955. P. 219.
  10. Kohls D.W., Rodda J.L. // Am. Mineral. 1967. V. 52. P. 1261.
  11. Чуканов Н.В., Пеков И.В., Левицкая Л.А. и др. // Зап. Рос. минерал. о-ва. 2008. Т. 137 (6). С. 38.
  12. Grguric B.A., Madsen I.C., Pring A. // Mineral. Mag. 2001. V. 65. P. 427. https://doi.org/10.1180/002646101300119501
  13. Koritnig S., Süsse P. // Tscherm. Min. Petr. Mitt. 1975. V. 22. P. 79.
  14. Mills S.J., Christy A.G., Génin J.-M.R. et al. // Mineral. Mag. 2012. V. 76. P. 1289. https://doi.org/10.1180/minmag.2012.076.5.10
  15. Allmann R. // Acta Cryst. B. 1968. V. 24. P. 972.
  16. Taylor H.F.W. // Mineral. Mag. 1973. V. 39. P. 377.
  17. Rives V. Layered Double Hydroxides: Present and Future. N.Y.: Nova Publishers, 2001.
  18. Duan X., Evans D.G. Layered Double Hydroxides. Structure and Bonding. V. 119. Springer Science and Business Media, 2006.
  19. Singha R.A., Kesavan P.S., Ray S.S. // ACS Omega. 2022. V. 7. P. 20428. https://doi.org/10.1021/acsomega.2c01405
  20. Mishra G., Dash B., Pandey S. // Appl. Clay Sci. 2018. V. 153. P. 172. https://doi.org/10.1016/j.clay.2017.12.021
  21. Shao Z.B., Cui J., Lin X.B. et al. // Compos. A. Appl. Sci. 2022. V. 155. P. 106841. https://doi.org/10.1016/j.compositesa.2022.106841
  22. Feng X., Long R., Wang L. et al. // Sep. Purif. Technol. 2022. V. 284. P. 120099. https://doi.org/10.1016/j.seppur.2021.120099
  23. Johnston A.L., Lester E., Williams O. et al. // J. Environ. Chem. Eng. 2021. V. 9 (4). P. 105197. https://doi.org/10.1016/j.jece.2021.105197
  24. Veerabhadrappa M.G., Maroto-Valer M.M., Chen Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13 (10). P. 11805. https://doi.org/10.1021/acsami.0c20457
  25. Татаринов А.В., Сапожников А.Н., Прокудин С.Г. и др. // Зап. Рос. минерал. о-ва. 1985. Т. 114. С. 575.
  26. Melchiorre E.B., Bottrill R., Huss G.R. et al. // Geochim. Cosmochim. Acta. 2017. V. 197. P. 43. https://doi.org/10.1016/j.gca.2016.10.020
  27. Stanimirova T. // Ann. Univ. Sofia. 2001. V. 94 (1). P. 73.
  28. Raade G. // Norsk Bergverksmuseum Skrift. 2013. V. 50. P. 55.
  29. Житова Е.С., Иванюк Г.Ю., Кривовичев С.В. и др. // Зап. Рос. минерал. о-ва. 2016. Т. 145 (3). С. 81.
  30. Zhitova E.S., Sheveleva R.M., Zolotarev A.A. et al. // Crystals. 2023. V. 13 (5). 839. https://doi.org/10.3390/cryst13050839
  31. Zhitova E.S., Krivovichev S.V., Pekov I.V. et al. // Mineral. Mag. 2019. V. 83. P. 269. https://doi.org/10.1180/mgm.2018.145
  32. Aminoff G., Broomé B. // Kungliga Svenska Vetenskapsakademiens Handlingar. 1932. V. 9. P. 23.
  33. Ingram L., Taylor H.F.W. // Mineral. Mag. 1967. V. 36 (280). P. 465.
  34. Mills S.J., Whitfield P.S., Wilson S.A. et al. // Am. Mineral. 2011. V. 96. P. 179. https://doi.org/10.2138/am.2011.3531
  35. Житова Е.С., Пеков И.В., Чуканов Н.В. и др. // Геол. геофиз. 2020. Т. 61 (1). С. 47.
  36. Matsubara S., Kato A., Nagashima K. // Bull. Natl. Sci. Mus. 1984. V. 10. P. 81.
  37. Zhitova E.S., Sheveleva R.M., Kasatkin A.V. et al. // Symmetry. 2023. V. 15. 1029. https://doi.org/10.3390/sym15051029
  38. Song Y., Moon H.S. // Clay Mineral. 1998. V. 33 (2). P. 285. https://doi.org/10.1180/000985598545480
  39. Bish D.L., Brindley G.W. // Am. Mineral. 1977. V. 62. P. 458.
  40. Mills S.J., Whitfield P.S., Kampf A.R. et al. // J. Geosci. 2012. V. 58. P. 273. http://doi.org/10.3190/jgeosci.127
  41. Allmann R., Donnay J.D.H. // Am. Mineral. 1969. V. 54 (1–2). P. 296.
  42. Braithwaite R.S.W., Dunn P.J., Pritchard R.G. et al. // Mineral. Mag. 1994. V. 58 (390). P. 79. https://doi.org/10.1180/minmag.1994.058.390.08
  43. Zhitova E.S., Chukanov N.V., Pekov I.V. et al. // Appl. Clay Sci. 2023. V. 243. 107070. https://doi.org/10.1016/j.clay.2023.107070
  44. Chukanov N.V., Pekov I.V., Levitskaya L.A. et al. // Geol. Ore Depos. 2009. V. 51. P. 767. https://doi.org/10.1134/S1075701509080091
  45. Allmann R., Jespen H.P. // N. Jb. Miner. Mh. 1969. V. 1969. P. 544.
  46. Bellotto M., Rebours B., Clause O. et al. // J. Phys. Chem. 1996. V. 100. P. 8527. https://doi.org/10.1021/jp960039j
  47. Hansen H.C.B., Taylor R.M. // Clay Mineral. 1991. V. 26 (4). P. 507. https://doi.org/10.1180/claymin.1991.026.4.06
  48. Monnin C., Chavagnac V., Boulart C. et al. // Biogeosciences. 2014. V. 11 (20). P. 5687. https://doi.org/10.5194/bg-11-5687-2014
  49. Hofmeister W., Von Platen H. // Crystallogr. Rev. 1992. V. 3. P. 3. https://doi.org/10.1080/08893119208032964
  50. Frondel C. // Am. Mineral. 1941. V. 26 (5). P. 295.
  51. Житова Е.С., Михайленко Д.С., Пеков И.В. и др. // Докл. РАН. Науки о Земле. 2024. Т. 515. № 7. С. 114.
  52. Zhitova E.S., Krivovichev S.V., Pekov I.V. et al. // Appl. Clay Sci. 2016. V. 130. P. 2. https://doi.org/10.1016/j.clay.2016.01.031
  53. Zhitova E.S., Krivovichev S.V., Pekov I.V. et al. // Minerals. 2019. V. 9 (4). 221. https://doi.org/10.3390/min9040221

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Image of pyroaurite from the Kovdor complex obtained in the backscattered electron detection mode. Note: the width of the largest pyroaurite plate is about 100 µm.

Download (43KB)
3. Fig. 2. Hypothetical superstructures of minerals of the hydrotalcite group (i.e. with M2+ : M3+ = 3 : 1): a – 2 × 2, b – √3 × 2.

Download (22KB)
4. Fig. 3. Relationship between the average radius of octahedral layer cations and the parameter a': light diamonds – relationship for hydrtalcite group minerals without takovite, rivesite and droninoite (R2 = 0.91); black diamond – droninoite with a chemical composition calculated for the ratio M2+ : M3+ = 3 : 1 (R2 = 0.73); white diamond – droninoite with a chemical composition calculated for the ratio M2+ : M3+ = 2 : 1 (R2 = 0.88).

Download (12KB)

Note

К 100-летию кафедры кристаллографии Санкт-Петербургского государственного университета


Copyright (c) 2025 Russian Academy of Sciences