Investigation of subunit vaccine candidates against african swine fever vaccine candidates derived from subdomains of the transmembrane protein CD2v, using immunoinformatics and molecular dynamics metods

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

African swine fever (ASF) remains a global threat to pig production, causing economic losses. In this study, a theoretical comparison of candidate subunit vaccines based on the ASFV transmembrane protein CD2v was performed. Three supramembrane subdomains of CD2v were evaluated using immunoinformatics, structure prediction and molecular modeling methods. The results show that all candidates are non-toxic, non-allergenic and able to induce a stable immune response, including long-term antibody production. Subdomain A stands out as the most promising due to its high immunogenicity, despite potential difficulties in expression in Escherichia coli. Immunomodeling of activation of both primary and secondary immune responses, analysis of structural stability showed the reliability of the candidates under ascertaining conditions. The study provides a theoretical basis for further experimental development of subunit vaccines against ASF, combining safety and efficacy.

Texto integral

Acesso é fechado

Sobre autores

А. Ivanovsky

National Research Centre “Kurchatov Institute”

Autor responsável pela correspondência
Email: a.1wanowskiy@gmail.com
Rússia, 1, Akademika Kurchatova pl., 123182 Moscow

V. Timofeev

National Research Centre “Kurchatov Institute”

Email: a.1wanowskiy@gmail.com
Rússia, 1, Akademika Kurchatova pl., 123182 Moscow

А. Chernyavsky

National Research Centre “Kurchatov Institute”

Email: a.1wanowskiy@gmail.com
Rússia, 1, Akademika Kurchatova pl., 123182 Moscow

А. Tulenev

National Research Centre “Kurchatov Institute”

Email: a.1wanowskiy@gmail.com
Rússia, 1, Akademika Kurchatova pl., 123182 Moscow

Y. Kordonskaya

National Research Centre “Kurchatov Institute”

Email: a.1wanowskiy@gmail.com
Rússia, 1, Akademika Kurchatova pl., 123182 Moscow

М. Marchenkova

National Research Centre “Kurchatov Institute”; Southern Federal University

Email: a.1wanowskiy@gmail.com

Smart Materials Research Institute, Southern Federal University

Rússia, 1, Akademika Kurchatova pl., 123182 Moscow; 344090 Rostov-on-Don

Y. Pisarevsky

National Research Centre “Kurchatov Institute”

Email: a.1wanowskiy@gmail.com
Rússia, 1, Akademika Kurchatova pl., 123182 Moscow

Y. Dyakova

National Research Centre “Kurchatov Institute”

Email: a.1wanowskiy@gmail.com
Rússia, 1, Akademika Kurchatova pl., 123182 Moscow

Bibliografia

  1. Tran X.H., Le T.T.P., Nguyen Q.H. et al. // Transbound Emerg Dis. 2022. V. 69. № 4. P. 497. https://doi.org/10.1111/tbed.14329
  2. Monteagudo P.L., Lacasta A., López E. et al. // J. Virology. 2017. № 21. P. 91. https://doi.org/10.1128/jvi.01058-17
  3. Abramson J., Adler J., Dunger J. et al. // Nature. 2024. V. 630. P. 493. https://doi.org/10.1038/s41586-024-07487-w
  4. Jeppe H., Trigos K.D., Pedersen M.D. et al. // ВioRxiv. 2022. № 487609. https://doi.org/10.1101/2022.04.08.487609
  5. Kolesnikov I.A., Timiofeev V.I., Ermakov A.V. et al. // Crystallography Reports. 2023. V. 68. № 6. P. 955. https://doi.org/10.1134/S1063774523601077
  6. Doytchinova I.A., Flower D.R. // BMC Bioinformatics. 2007. V. 8. P. 4. https://doi.org/10.1186/1471-2105-8-4
  7. Sudipto Saha, Raghava G.P.S. // Nucleic Acids Res. 2006. V. 34. P. 202. https://doi.org/10.1093/nar/gkl343
  8. Sharma N., Naorem L.D., Jain S., Raghava G.P.S. // Brief Bioinform. 2022. V. 23. № 5. P. 174. https://doi.org/10.1093/bib/bbac174
  9. Rapin N., Lund O., Bernaschi M., Castiglione F. // PLoS One. 2010. V. 5. № 4. P. 9862. https://doi.org/10.1371/journal.pone.0009862
  10. Páll S., Zhmurov A., Bauer P. et al. // J. Chem. Phys. 2020. V. 153. № 13. P. 134110. https://doi.org/10.1063/5.0018516

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Spatial structure of the CD2v protein with highlighted subdomains.

Baixar (70KB)
3. Fig. 2. Results of in silico computational immunological modeling (C-ImmSim [9]) with the proposed subunit vaccine candidates as antigens: dynamics of immunoglobulin generation after antigen administration (left column) and release of cytokines and interleukins in response to antigen administration (right column).

Baixar (722KB)
4. Fig. 3. Evolution of the root mean square deviation (RMSD) and radius of gyration (R) characterizing the stability of the structures of vaccine candidates based on A (top), B (middle) and A + B (bottom) subunits during 100 ns molecular dynamics.

Baixar (456KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025