Ab initio molecular dynamics simulation of the superionic state in Pb0.78Sr0.19K0.03F1.97 solid solution: fluoride sublattice behaviour
- Autores: Petrov A.V.1, Ji Q.1, Murin I.V.1, Ivanov-Schitz A.K.2
- 
							Afiliações: 
							- St. Petersburg State University
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
 
- Edição: Volume 69, Nº 2 (2024)
- Páginas: 284-289
- Seção: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://cardiosomatics.ru/0023-4761/article/view/673209
- DOI: https://doi.org/10.31857/S0023476124020123
- EDN: https://elibrary.ru/YSSNLR
- ID: 673209
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The structural and transport characteristics of the behavior of the fluorine-ion sublattice in the solid solution Pb0.78Sr0.19K0.03F1.97 were studied using the method of non-empirical molecular dynamics. It is shown that the local diffusion of fluoride ions varies depending on the nature of the dopant atom, which is consistent with experimentally observed transport characteristics.
Texto integral
 
												
	                        Sobre autores
A. Petrov
St. Petersburg State University
							Autor responsável pela correspondência
							Email: a.petrov@spbu.ru
				                					                																			                												                	Rússia, 							St. Petersburg						
Q. Ji
St. Petersburg State University
														Email: a.petrov@spbu.ru
				                					                																			                												                	Rússia, 							St. Petersburg						
I. Murin
St. Petersburg State University
														Email: a.petrov@spbu.ru
				                					                																			                												                	Rússia, 							St. Petersburg						
A. Ivanov-Schitz
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: a.petrov@spbu.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Gopinadh S.V., Phanendra P.V.R.L., John B., Mercy T.D. // Sustain. Mater. Technol. 2022. V. 32. P. e00436. https://doi.org/10.1016/j.susmat.2022.e00436
- Konishi H., Minato T., Abe T., Ogumi Z. // J. Electroanal. Chem. 2020. V. 871. P. 114103. https://doi.org/10.1016/j.jelechem.2020.114103
- Liu L., Yang L., Shao D. et al. // Ceram. Int. 2020. V. 46. P. 20521. https://doi.org/10.1016/j.ceramint.2020.05.161
- Liu G., Zhou Z., Fei F. et al. // Phys. B. Condens. Matter. 2015. V. 457. P. 132. https://doi.org/10.1016/j.physb.2014.10.004
- Feng X.X., Liu B., Long M. et al. // J. Phys. Chem. Lett. 2020. V. 11. P. 6266. https://doi.org/10.1021/acs.jpclett.0c01870
- Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. СПб: Изд-во СПбГУ, 2010. Т. 2. 1000 с.
- Ji Q., Melnikova N.A., Glumov O.V. et al. // Ceram. Int. 2023. V. 49. P. 16901. https://doi.org/10.1016/j.ceramint.2023.02.051
- Molaiyan P., Witter R. // J. Electroanal. Chem. 2019. V. 845. P. 154. https://doi.org/10.1016/j.jelechem.2019.04.063
- Nowroozi M.A., Mohammad I., Molaiyan P. et al. // J. Mater. Chem. A. 2021. V. 9. P. 5980. https://doi.org/10.1039/D0TA11656D
- Düvel A. // Dalt. Trans. 2019. V. 48. P. 859. https://doi.org/10.1039/C8DT03759K
- Rapaport D.C. The Art of Molecular Dynamics Simulation. Cambridge University Press, 2004. 549 p. https://doi.org/10.1017/CBO9780511816581
- Walker A.B., Dixon M., Gillan M.J. // J. Phys. C. 1982. V. 15. P. 4061. https://doi.org/10.1088/0022-3719/15/19/007
- Готлиб И.Ю., Мурин И.В., Пиотровская E.M., Бродская Е.Н. // Вестн. СПбГУ. 2000. Т. 4. С. 62.
- Zimmer F., Ballone P., Parrinello M., Maier J. // Solid State Ionics. 2000. V. 127. P. 277. https://doi.org/10.1016/S0167-2738(99)00267-2
- Grasselli F. // J. Chem. Phys. 2022. V. 156. P. 277. https://doi.org/10.1063/5.0087382
- Monteil A., Chaussedent S., Guichaoua D. // Mater. Chem. Phys. 2014. V. 146. P. 170. https://doi.org/10.1016/j.matchemphys.2014.03.016
- López J.D., García G., Correa H et al. // Data Br. 2020. V. 28. P. 104865. https://doi.org/10.1016/j.dib.2019.104865
- López J.D., Diosa J.E., García G. et al. // Heliyon. 2022. V. 8. P. E09026. https://doi.org/10.1016/j.heliyon.2022.e09026
- López J.D., Diosa J.E., Correa H. // Ionics (Kiel). 2019. V. 25. P. 5383. https://doi.org/10.1007/s11581-019-03073-7
- Silva M.A.P., Rino J.P., Monteil A. et al. // J. Chem. Phys. 2004. V. 121. P. 7413. https://doi.org/10.1063/1.1796252
- Chergui Y., Nehaoua N., Telghemti B. et al. // Eur. Phys. J. Appl. Phys. 2010. V. 51. P. 20502. https://doi.org/10.1051/epjap/2010096
- Silva M.A.P., Rino J.P., Monteil A. et al. // J. Chem. Phys. 2004. V. 121. P. 7413. https://doi.org/10.1063/1.1796252
- Petrov А.V., Ji Q., Murin I.V. // Russ. J. Gen. Chem. 2022. V. 92. P. 2877. https://doi.org/10.1134/S1070363222120404
- Netshisaulu T.T., Chadwick A.V., Ngoepe P.E., Catlow C.R.A. // J. Phys. Condens. Matter. 2005. V. 17. P. 6575. https://doi.org/10.1088/0953-8984/17/41/026
- Evarestov R.A., Murin I.V., Petrov A.V. // J. Phys. Condens. Matter. 1989. V. 1. P. 6603. https://doi.org/10.1088/0953-8984/1/37/008
- Evarestov R.A., Leko A.V., Murin I.V. et al. // Phys. Status Solidi. 1992. V. 170. P. 145. https://doi.org/10.1002/pssb.2221700117
- Chen J., Zhang Z., Guo Y., Robertson J. // J. Appl. Phys. 2022. V. 131. P. 145. https://doi.org/10.1063/5.0087914
- Hoat D.M., Rivas Silva J.F., Méndez Blas A. // Optik. 2019. V. 181. P. 1023. https://doi.org/10.1016/j.ijleo.2018.12.173
- Oka M., Kamisaka H., Fukumura T., Hasegawa T. // Comput. Mater. Sci. 2018. V. 154. P. 91. https://doi.org/10.1016/j.commatsci.2018.07.038
- Zhu Z., Deng Z., Chu I.-H. et al. // Comput. Mater. Syst. Des. Springer Int. Publ., 2018. P. 147. https://doi.org/10.1007/978-3-319-68280-8_7
- Mo Y. // ECS Meet. Abstr. 2019. V. MA2019-02. P. 97. https://doi.org/10.1149/MA2019-02/2/97
- Petrov A.V., Ivanov-Schitz A.K., Murin I.V. // Phys. Status Solidi. 2023. V. 220. P. 97. https://doi.org/10.1002/pssa.202200494
- He X., Zhu Y., Mo Y. // Nat. Commun. 2017. V. 8. P. 15893. https://doi.org/10.1038/ncomms15893
- Sun S., Xia D. // Solid State Ionics. 2008. V. 179. P. 2330. https://doi.org/10.1016/j.ssi.2008.09.028
- Zhu Z., Chu I.-H., Ong S.P. // Chem. Mater. 2017. V. 29. P. 2474. https://doi.org/10.1021/acs.chemmater.6b04049
- Wan T.H., Ciucci F. // ACS Appl. Energy Mater. 2021. V. 4. P. 7930. https://doi.org/10.1021/acsaem.1c01262
- Hernández-Haro N., Ortega-Castro J., Martynov Y.B. et al. // Chem. Phys. 2019. V. 516. P. 225. https://doi.org/10.1016/j.chemphys.2018.09.023
- Drużbicki K., Mikuli E., Kocot A. et al. // J. Phys. Chem. A. 2012. V. 116. P. 7809. https://doi.org/10.1021/jp301190z
- Bruska M.K., Czekaj I., Delley B. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 15947. https://doi.org/10.1039/c1cp20923j
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



