The Structure of the Hfq Protein from Chromobacterium haemolyticum Revealed a New Variant of Regulation of RNA Binding with the Protein
- Авторлар: Lekontseva N.V.1, Nikulin A.D.1
-
Мекемелер:
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia
- Шығарылым: Том 68, № 6 (2023)
- Беттер: 907-913
- Бөлім: STRUCTURE OF MACROMOLECULAR COMPOUNDS
- URL: https://cardiosomatics.ru/0023-4761/article/view/673284
- DOI: https://doi.org/10.31857/S0023476123700339
- EDN: https://elibrary.ru/FVWDIA
- ID: 673284
Дәйексөз келтіру
Аннотация
The structure of the Hfq protein from the bacterium Chromobacterium haemolyticum, which forms crystals in two different spatial groups, has been determined. In both cases, the protein has a specific quaternary hexamer-ring structure. The obtained structure showed a previously undescribed interaction between the C-terminal unstructured part of Hfq and the amino acid residues of the proximal RNA-binding site of the protein. This contact may contribute to the regulation of the binding of RNA molecules to the Hfq protein.
Авторлар туралы
N. Lekontseva
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia
Email: nikulin@vega.protres.ru
Россия, Пущино
A. Nikulin
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia
Хат алмасуға жауапты Автор.
Email: nikulin@vega.protres.ru
Россия, Пущино
Әдебиет тізімі
- Jørgensen M.G., Pettersen J.S., Kallipolitis B.H. // Biochim. Biophys. Acta – Gene Regul. Mech. 2020. V. 1863. P. 194504. https://doi.org/10.1016/j.bbagrm.2020.194504
- Holmqvist E., Wagner G.H. // Biochem. Soc. Trans. 2017. V. 45. P. 1203. https://doi.org/10.1042/BST20160363
- Dutta T., Srivastava S. // Gene. 2018. V. 656. P. 60. https://doi.org/10.1016/j.gene.2018.02.068
- Wagner E.G.H., Romby P. // Adv. Genet. 2015. V. 90. P. 133. https://doi.org/10.1016/bs.adgen.2015.05.001
- Pecoraro V., Rosina A., Polacek N. // Non-Coding RNA. 2022. V. 8. P. 22. https://doi.org/10.3390/ncrna8020022
- Miyakoshi M. et al. // Mol. Microbiol. 2022. V. 117. P. 160. https://doi.org/10.1111/mmi.14814
- Antoine L. et al. // Genes (Basel). 2021. V. 12. P. 1125. https://doi.org/10.3390/genes12081125
- dos Santos R.F., Arraiano C.M., Andrade J.M. // Curr. Genet. 2019. V. 65. P. 1313. https://doi.org/10.1007/s00294-019-00990-y
- Stenum T.S., Holmqvist E. // Mol. Microbiol. 2022. V. 117. P. 4. https://doi.org/10.1111/mmi.14785
- Katsuya-Gaviria K. et al. // RNA Biol. 2022. V. 19. P. 419. https://doi.org/10.1080/15476286.2022.2048565
- Woodson S.A., Panja S., Santiago-Frangos A. // Microbiol. Spectr. / Ed. Storz G., Papenfort K. 2018. V. 6. https://doi.org/10.1128/microbiolspec.RWR-0026-2018
- Updegrove T.B., Zhang A., Storz G. // Curr. Opin. Microbiol. 2016. V. 30. P. 133. https://doi.org/10.1016/j.mib.2016.02.003
- Murina V., Lekontseva N., Nikulin A. // Acta Cryst. D. 2013. V. 69. P. 1504. https://doi.org/10.1107/S090744491301010X
- Park S. et al. // Elife. 2021. V. 10. P. 1. https://doi.org/10.7554/eLife.64207
- Kavita K., de Mets F., Gottesman S. // Curr. Opin. Microbiol. 2018. V. 42. P. 53. https://doi.org/10.1016/j.mib.2017.10.014
- Schu D.J. et al. // EMBO J. 2015. V. 34. P. 2557. https://doi.org/10.15252/embj.201591569
- Santiago-Frangos A. et al. // Proc. Natl. Acad. Sci. U. S. A. 2019. V. 166. P. 10978. https://doi.org/10.1073/pnas.1814428116
- Kavita K. et al. // Nucl. Acids Res. 2022. V. 50. P. 1718. https://doi.org/10.1093/nar/gkac017
- Santiago-Frangos A. et al. // Proc. Natl. Acad. Sci. U. S. A. 2016. V. 113. P. E6089. https://doi.org/10.1073/pnas.1613053113
- Han X.Y., Han F.S., Segal J. // Int. J. Syst. Evol. Microbiol. 2008. V. 58. P. 1398. https://doi.org/10.1099/ijs.0.64681-0
- Lima-Bittencourt C.I. et al. // BMC Microbiol. 2007. V. 7. P. 58. https://doi.org/10.1186/1471-2180-7-58
- Takenaka R. et al. // Jpn. J. Infect. Dis. 2015. V. 68. P. 526. https://doi.org/10.7883/yoken.JJID.2014.285
- Okada M. et al. // BMC Infect. Dis. 2013. V. 13. P. 406. https://doi.org/10.1186/1471-2334-13-406
- Tanpowpong P., Charoenmuang R., Apiwattanakul N. // Pediatr. Int. 2014. V. 56. P. 615. https://doi.org/10.1111/ped.12301
- Teixeira P. et al. // Mol. Genet. Genomics. 2020. V. 295. P. 1001. https://doi.org/10.1007/S00438-020-01676-8
- Winn M.D. et al. // Acta Cryst. D. 2011. V. 67. P. 235. https://doi.org/10.1107/S0907444910045749
- McCoy A.J. et al. // J. Appl. Cryst. 2007. V. 40. P. 658. https://doi.org/10.1107/S0021889807021206
- Afonine P. V et al. // Acta Cryst. D. 2012. V. 68. P. 352. https://doi.org/10.1107/S0907444912001308
- Emsley P. et al. // Acta Cryst. D. 2010. V. 66. P. 486. https://doi.org/10.1107/S0907444910007493
- Wang W. et al. // Genes Dev. 2011. V. 25. P. 2106. https://doi.org/10.1101/gad.16746011.2004
- Santiago-Frangos A., Woodson S.A. // Wiley Interdiscip. Rev. RNA. 2018. V. 9. P. e1475. https://doi.org/10.1002/wrna.1475
- Sonnleitner E. et al. // Biochem. Biophys. Res. Commun. 2004. V. 323. P. 1017. https://doi.org/10.1016/j.bbrc.2004.08.190
- Vecerek B. et al. // Nucl. Acids Res. 2008. V. 36. P. 133. https://doi.org/10.1093/nar/gkm985
- Panja S. et al. // J. Mol. Biol. 2015. V. 427. P. 3491. https://doi.org/10.1016/j.jmb.2015.07.010
