The Structure of the Hfq Protein from Chromobacterium haemolyticum Revealed a New Variant of Regulation of RNA Binding with the Protein

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The structure of the Hfq protein from the bacterium Chromobacterium haemolyticum, which forms crystals in two different spatial groups, has been determined. In both cases, the protein has a specific quaternary hexamer-ring structure. The obtained structure showed a previously undescribed interaction between the C-terminal unstructured part of Hfq and the amino acid residues of the proximal RNA-binding site of the protein. This contact may contribute to the regulation of the binding of RNA molecules to the Hfq protein.

Sobre autores

N. Lekontseva

Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia

Email: nikulin@vega.protres.ru
Россия, Пущино

A. Nikulin

Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia

Autor responsável pela correspondência
Email: nikulin@vega.protres.ru
Россия, Пущино

Bibliografia

  1. Jørgensen M.G., Pettersen J.S., Kallipolitis B.H. // Biochim. Biophys. Acta – Gene Regul. Mech. 2020. V. 1863. P. 194504. https://doi.org/10.1016/j.bbagrm.2020.194504
  2. Holmqvist E., Wagner G.H. // Biochem. Soc. Trans. 2017. V. 45. P. 1203. https://doi.org/10.1042/BST20160363
  3. Dutta T., Srivastava S. // Gene. 2018. V. 656. P. 60. https://doi.org/10.1016/j.gene.2018.02.068
  4. Wagner E.G.H., Romby P. // Adv. Genet. 2015. V. 90. P. 133. https://doi.org/10.1016/bs.adgen.2015.05.001
  5. Pecoraro V., Rosina A., Polacek N. // Non-Coding RNA. 2022. V. 8. P. 22. https://doi.org/10.3390/ncrna8020022
  6. Miyakoshi M. et al. // Mol. Microbiol. 2022. V. 117. P. 160. https://doi.org/10.1111/mmi.14814
  7. Antoine L. et al. // Genes (Basel). 2021. V. 12. P. 1125. https://doi.org/10.3390/genes12081125
  8. dos Santos R.F., Arraiano C.M., Andrade J.M. // Curr. Genet. 2019. V. 65. P. 1313. https://doi.org/10.1007/s00294-019-00990-y
  9. Stenum T.S., Holmqvist E. // Mol. Microbiol. 2022. V. 117. P. 4. https://doi.org/10.1111/mmi.14785
  10. Katsuya-Gaviria K. et al. // RNA Biol. 2022. V. 19. P. 419. https://doi.org/10.1080/15476286.2022.2048565
  11. Woodson S.A., Panja S., Santiago-Frangos A. // Microbiol. Spectr. / Ed. Storz G., Papenfort K. 2018. V. 6. https://doi.org/10.1128/microbiolspec.RWR-0026-2018
  12. Updegrove T.B., Zhang A., Storz G. // Curr. Opin. Microbiol. 2016. V. 30. P. 133. https://doi.org/10.1016/j.mib.2016.02.003
  13. Murina V., Lekontseva N., Nikulin A. // Acta Cryst. D. 2013. V. 69. P. 1504. https://doi.org/10.1107/S090744491301010X
  14. Park S. et al. // Elife. 2021. V. 10. P. 1. https://doi.org/10.7554/eLife.64207
  15. Kavita K., de Mets F., Gottesman S. // Curr. Opin. Microbiol. 2018. V. 42. P. 53. https://doi.org/10.1016/j.mib.2017.10.014
  16. Schu D.J. et al. // EMBO J. 2015. V. 34. P. 2557. https://doi.org/10.15252/embj.201591569
  17. Santiago-Frangos A. et al. // Proc. Natl. Acad. Sci. U. S. A. 2019. V. 166. P. 10978. https://doi.org/10.1073/pnas.1814428116
  18. Kavita K. et al. // Nucl. Acids Res. 2022. V. 50. P. 1718. https://doi.org/10.1093/nar/gkac017
  19. Santiago-Frangos A. et al. // Proc. Natl. Acad. Sci. U. S. A. 2016. V. 113. P. E6089. https://doi.org/10.1073/pnas.1613053113
  20. Han X.Y., Han F.S., Segal J. // Int. J. Syst. Evol. Microbiol. 2008. V. 58. P. 1398. https://doi.org/10.1099/ijs.0.64681-0
  21. Lima-Bittencourt C.I. et al. // BMC Microbiol. 2007. V. 7. P. 58. https://doi.org/10.1186/1471-2180-7-58
  22. Takenaka R. et al. // Jpn. J. Infect. Dis. 2015. V. 68. P. 526. https://doi.org/10.7883/yoken.JJID.2014.285
  23. Okada M. et al. // BMC Infect. Dis. 2013. V. 13. P. 406. https://doi.org/10.1186/1471-2334-13-406
  24. Tanpowpong P., Charoenmuang R., Apiwattanakul N. // Pediatr. Int. 2014. V. 56. P. 615. https://doi.org/10.1111/ped.12301
  25. Teixeira P. et al. // Mol. Genet. Genomics. 2020. V. 295. P. 1001. https://doi.org/10.1007/S00438-020-01676-8
  26. Winn M.D. et al. // Acta Cryst. D. 2011. V. 67. P. 235. https://doi.org/10.1107/S0907444910045749
  27. McCoy A.J. et al. // J. Appl. Cryst. 2007. V. 40. P. 658. https://doi.org/10.1107/S0021889807021206
  28. Afonine P. V et al. // Acta Cryst. D. 2012. V. 68. P. 352. https://doi.org/10.1107/S0907444912001308
  29. Emsley P. et al. // Acta Cryst. D. 2010. V. 66. P. 486. https://doi.org/10.1107/S0907444910007493
  30. Wang W. et al. // Genes Dev. 2011. V. 25. P. 2106. https://doi.org/10.1101/gad.16746011.2004
  31. Santiago-Frangos A., Woodson S.A. // Wiley Interdiscip. Rev. RNA. 2018. V. 9. P. e1475. https://doi.org/10.1002/wrna.1475
  32. Sonnleitner E. et al. // Biochem. Biophys. Res. Commun. 2004. V. 323. P. 1017. https://doi.org/10.1016/j.bbrc.2004.08.190
  33. Vecerek B. et al. // Nucl. Acids Res. 2008. V. 36. P. 133. https://doi.org/10.1093/nar/gkm985
  34. Panja S. et al. // J. Mol. Biol. 2015. V. 427. P. 3491. https://doi.org/10.1016/j.jmb.2015.07.010

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (842KB)
3.

Baixar (971KB)
4.

Baixar (1005KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023