EXTRACTION, PURIFICATION, AND SMALL-ANGLE X-RAY SCATTERING ANALYSIS OF THE YSXC GTPASE OF STAPHYLOCOCCUS AUREUS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Study of the structures of various biological macromolecules is one of the main directions that are intensively developed using physical methods. Since proteins are an elementary unit of the structural and functional organization of a cell, the strategies for combating pathogenic microorganisms include the analysis of the bacterial protein synthesis apparatus and related systems. The extraction, purification, and small-angle X-ray scattering analysis of the structure of YsxC protein from the Staphylococcus aureus pathogenic bacterium are reported. This protein is involved in the cell growth and division processes, serves an energy-dependent factor, and participates in the assembly of large ribosome subunit. The structural study of this protein opens up a possibility of searching for small molecules capable of inhibiting its function. Since the structural variability of protein factors is higher than that of the conservative ribosome sites, their inhibition makes it possible to selectively affect a pathogenic microorganism.

Sobre autores

A. Biktimirov

Kazan (Volga Region) Federal University, Kazan, 420008 Russia

Email: k.usachev@kpfu.ru
Россия, Казань

D. Islamov

Kazan (Volga Region) Federal University, Kazan, 420008 Russia

Email: k.usachev@kpfu.ru
Россия, Казань

S. Validov

Kazan (Volga Region) Federal University, Kazan, 420008 Russia

Email: k.usachev@kpfu.ru
Россия, Казань

G. Peter's

National Research Centre “Kurchatov Institute,” Moscow, 123098 Russia

Email: k.usachev@kpfu.ru
Россия, Москва

A. Khaliullina

Kazan (Volga Region) Federal University, Kazan, 420008 Russia

Email: k.usachev@kpfu.ru
Россия, Казань

M. Yusupov

Institut de génétique et de biologie moléculaire et cellulaire, 67400 Illkirch-Graffenstaden, France

Email: k.usachev@kpfu.ru
Франция, Илькирш-Граффенштаден

K. Usachev

Kazan (Volga Region) Federal University, Kazan, 420008 Russia

Autor responsável pela correspondência
Email: k.usachev@kpfu.ru
Россия, Казань

Bibliografia

  1. Chambers H.F., Deleo F.R. // Nat Rev Microbiol. 2009. V. 7 № 9. P. 629. https://doi.org/10.1038/nrmicro2200
  2. Stapleton P.D., Taylor P.W. // Sci Prog. 2002. V. 85 № 1. P. 57. https://doi.org/10.3184/003685002783238870
  3. Gan T., Shu G., Fu H. et al. // BMC Vet Res. 2021. V. 17 P. 177. https://doi.org/10.1186/s12917-021-02884-z
  4. Murray Ch.J.L., Shunji I.K., Sharara F. et al. // Lancet. 2022. V. 10325. № 399. P. 629. https://doi.org/10.1016/S0140-6736(21)02724-0
  5. Poehlsgaard J., Douthwaite S. // Nat. Rev. Microbiol. 2005. V. 3. P. 870. https://doi.org/10.1038/nrmicro1265
  6. Усачев К.С., Юсупов М.М., Валидов Ш.З. // Биохимия. 2020. Т. 85. № 11. С. 1690. https://doi.org/10.1134/S0006297920110115
  7. Khusainov I., Fatkhullin B., Pellegrino S. // Nature Commun. 2020. V. 11 № 1656. https://doi.org/10.1038/s41467-020-15517-0
  8. Cooper E.L., García-Lara J., Foster S.J. // BMC Microbiol. 2009. V. 9. № 266. https://doi.org/10.1186/1471-2180-9-266
  9. Ramakrishnan C., Dani V.S., Ramasarma T. // Protein Eng. Des. Sel. 2002. V. 15. № 10. P. 783. https://doi.org/10.1093/protein/15.10.783
  10. Ni X., Davis J.H., Jain N. et al. // Nucl. Acids Res. 2016. V. 44. № 17. P. 8442. https://doi.org/10.1093/nar/gkw678
  11. Корчуганов В.Н., Валентинов А.Г., Полозов С.М. и др. // Кристаллография. 2022. Т. 67. № 5. С. 735. https://doi.org/10.31857/S0023476122050058
  12. Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277. https://doi.org/10.1107/S0021889803012779
  13. Svergun D.I. // Biophys J. 1999. V. 76. № 6. P. 2879. https://doi.org/10.1016/S0006-3495(99)77443-6
  14. Gosavi R.A., Mueser T.C., Schall C.A. // Acta Cryst. 2008. V. 64. P. 506. https://doi.org/10.1107/S0907444908004265
  15. Ruzheinikov S.N., Das Sanjan K., Sedelnikova S.E. et al. // J. Mol. Biol. 2004. V. 339 № 2. P. 265. https://doi.org/10.1016/j.jmb.2004.03.043
  16. Goldenberg D.P., Argyle B. // Biophys. J. 2014. V. 106. № 4. P. 895. https://doi.org/10.1016/j.bpj.2013.12.004
  17. Chacon P., Moran F., Dia z J.F. et al. // Biophys. J. 1998. V. 74. P. 2760. https://doi.org/10.1016/S0006-3495(98)77984-6
  18. Svergun D.I., Barberato C., Koch M.H.J. // J. Appl. Cryst. 1999. V. 28. P. 768. https://doi.org/10.1107/S1600576717007786
  19. Jumper J., Evans R., Pritzel A. et al. // Nature. 2021. V. 596. P. 583. https://doi.org/10.1038/s41586-021-03819-2

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (22KB)
3.

Baixar (264KB)
4.

Baixar (88KB)
5.

Baixar (62KB)
6.

Baixar (375KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023