Crystal chemistry of silver borates with salt-inclusion structures
- Autores: Volkov S.N.1,2, Charkin D.O.3,2, Aksenov S.M.2, Banaru A.M.3,2, Kopylova Y.O.4,2, Bubnova R.S.5
-
Afiliações:
- Xinjiang Technical Institute of Physics and Chemistry
- Kola Science Centre RAS
- Lomonosov Moscow State University
- St. Petersburg State University
- National Research Centre “Kurchatov Institute” – Petersburg Nuclear Physics Institute (PNPI)
- Edição: Volume 70, Nº 2 (2025)
- Páginas: 281-295
- Seção: REVIEWS
- URL: https://cardiosomatics.ru/0023-4761/article/view/682965
- DOI: https://doi.org/10.31857/S0023476125020055
- EDN: https://elibrary.ru/BYSXLP
- ID: 682965
Citar
Resumo
A review of structural studies of silver borates with salt-inclusion structures is presented. Data on the first halogen-containing silver borates are provided, along with the structural and physicochemical characterization of the Ag4B4O7X2 (X = Br, I), Ag3B6O10X (X = Br, I, NO3), Ag4B7O12X (X = Cl, Br, I) families, as well as Ag4(B3O6)(NO3) and Ag3B4O6(OH)2(NO3). The crystal structures of these compounds are framework-type, layered, or composed of isolated boron-oxygen groups. In almost all cases, silver atoms exhibit pronounced anharmonicity in thermal displacements, which was investigated using X-ray structural analysis, including extensive temperature-dependent studies. The reasons for the low stability of chlorine-containing silver borates are discussed, along with the relationship between the anharmonicity of thermal displacements and other properties, such as the high ionic conductivity of Ag3B6O10I.
Texto integral

Sobre autores
S. Volkov
Xinjiang Technical Institute of Physics and Chemistry; Kola Science Centre RAS
Autor responsável pela correspondência
Email: s.n.volkov@inbox.ru
República Popular da China, CAS, Urumqi; Apatity
D. Charkin
Lomonosov Moscow State University; Kola Science Centre RAS
Email: s.n.volkov@inbox.ru
Rússia, Moscow; Apatity
S. Aksenov
Kola Science Centre RAS
Email: s.n.volkov@inbox.ru
Rússia, Apatity
A. Banaru
Lomonosov Moscow State University; Kola Science Centre RAS
Email: s.n.volkov@inbox.ru
Rússia, Moscow; Apatity
Yu. Kopylova
St. Petersburg State University; Kola Science Centre RAS
Email: s.n.volkov@inbox.ru
Institute of Earth Sciences
Rússia, St. Petersburg; ApatityR. Bubnova
National Research Centre “Kurchatov Institute” – Petersburg Nuclear Physics Institute (PNPI)
Email: s.n.volkov@inbox.ru
Grebenshchikov Institute of Silicate Chemistry
Rússia, St. PetersburgBibliografia
- Bubnova R.S., Filatov S.K. // Z. Kristallogr. Cryst. Mater. 2013. V. 228 P. 395. https://doi.org/10.1524/zkri.2013.1646
- Bubnova R., Volkov S., Albert B. et al. // Crystals (Basel). 2017. V. 7. P. 93. https://doi.org/10.3390/cryst7030093
- Topnikova A.P., Belokoneva E.L. // Russ. Chem. Rev. 2019. V. 88. P. 204. https://doi.org/10.1070/RCR4835
- Leonyuk N.I., Maltsev V.V., Volkova E.A. // Molecules. 2020. V. 25. P. 2450. https://doi.org/10.3390/molecules25102450
- Mutailipu M., Poeppelmeier K.R., Pan S. // Chem. Rev. 2021. V. 121. P. 1130. https://doi.org/10.1021/acs.chemrev.0c00796
- Huang C., Mutailipu M., Zhang F. et al. // Nat. Commun. 2021. V. 12. P. 2597. https://doi.org/10.1038/s41467-021-22835-4
- Пятницкий И.В., Сухан В.В. Аналитическая химия серебра. М.: Наука, 1975. 264 с.
- Shannon R.D. // Acta Cryst. А. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- Hyman A., Perloff A., Mauer F. et al. // Acta Cryst. 1967. V. 22. P. 815. https://doi.org/10.1107/S0365110X6700163X
- Krogh-Moe J. // Acta Cryst. 1965. V. 18. P. 77. https://doi.org/10.1107/S0365110X65000142
- Volkov S.N., Charkin D.O., Arsentev M.Yu. et al. // CrystEngComm. 2022. V. 24. P. 4174. https://doi.org/10.1039/D2CE00307D
- Volkov S.N., Charkin D.O., Kireev V.E. et al. // Solid State Sci. 2023. V. 145. P. 107311. https://doi.org/10.1016/j.solidstatesciences
- Chen Z., Pan S., Dong X. et al. // Inorg. Chim. Acta. 2023. V. 406. P. 205. https://doi.org/10.1016/j.ica.2013.04.046
- Yakubovich O.V., Perevoznikova I.V., Dimitrova O.V. et al. // Doklady Physics. 2002. V. 47. P. 791. https://doi.org/10.1134/1.1526424
- Corazza E., Menchetti S., Sabelli C. // Am. Mineral. 1974. V. 59. P. 1005.
- Volkov S., Aksenov S., Charkin D. et al. // Solid State Sci. 2024. V. 148. P. 107414. http://dx.doi.org/10.1016/j.solidstatesciences.2023.107414
- Touboul M., Penin N., Nowogrocki G. // Solid State Sci. 2004. V. 5. P. 1327. https://doi.org/10.1016/S1293-2558(03)00173-0
- Sennova N.A., Bubnova R.S., Filatov S.K. et al. // Glass Phys. Chem. 2007. V. 33. P. 217. https://doi.org/10.1134/S1087659607030054
- Dong X., Wu H., Shi Y. et al. // Chem. A. Eur. J. 2013. V. 19. P. 7338. https://doi.org/10.1002/chem.201300902
- Bürgi H.B., Capelli S.C., Birkedal H. // Acta Cryst. А. 2000. V. 56. P. 425. https://doi.org/10.1107/S0108767300008734
- Schulz H. // The Physics of Superionic Conductors and Electrode Materials. Boston: Springer, 1983. P. 5. https://doi.org/10.1007/978-1-4684-4490-2_2
- Perenthaler E., Schulz H., Beyeler H.U. // Solid State Ion. 1981. V. 5. P. 493. https://doi.org/10.1016/0167-2738(81)90300-3
- Boucher F., Evain M., Brec R. // J. Solid State Chem. 1993. V. 107. P. 332. https://doi.org/10.1006/jssc.1993.1356
- Bindi L., Cooper M.A., McDonald A.M. // Can. Mineral. 2015. V. 53. P. 159. https://doi.org/10.3749/canmin.1500009
- Kuhs W. // Aust. J. Phys. 1988. V. 41. P. 369. https://doi.org/10.1071/PH880369
- Volkov S.N., Charkin D.O., Firsova V.A. et al. // Crystallogr. Rev. 2023. V. 29. P. 147. https://doi.org/10.1080/0889311X.2023.2266400
- Kuhs W.F. // International Tables for Crystallography. Chester: International Union of Crystallography, 2006. P. 228. https://doi.org/10.1107/97809553602060000636
- Trueblood K.N., Bürgi H.B., Burzlaff H. et al. // Acta Cryst. A. 1996. V. 52. P. 770. https://doi.org/10.1107/S0108767396005697
- Morrison G., zur Loye H.-C. // Cryst. Growth Des. 2020. V. 20. P. 8071. https://doi.org/10.1021/acs.cgd.0c01317
- West J.P., Hwu S.-J. // J. Solid State Chem. 2012. V. 195. P. 101. https://doi.org/10.1016/j.jssc.2012.06.015
- Bai C., Han S., Pan S. et al. // RSC Adv. 2015. V. 5. P. 12416. https://doi.org/10.1039/C4RA16639F
- Yan Y., Jiao J., Tu C. et al. // J. Mater. Chem. 2022. V. 10. P. 8584. https://doi.org/10.1039/D2TC01598F
- Plachinda P.A., Dolgikh V.A., Stefanovich S.Yu. et al. // Solid State Sci. 2005. V. 7. P. 1194. https://doi.org/10.1016/j.solidstatesciences.2005.05.006
- Yakubovich O.V., Mochenova N.N., Dimitrova O.V. et al. // Acta Cryst. E. 2004. V. 60. P. i127. https://doi.org/10.1107/S1600536804023232
- Thornley F.R., Kennedy N.S.J., Nelmes R.J. // J. Phys. C. 1976. V. 9. P. 681. https://doi.org/10.1088/0022-3719/9/5/010
- Chiodelli G., Flor G., Magistris A. et al. // J. Therm. Anal. 1983. V. 28. P. 273. https://doi.org/10.1007/BF01983260
- Volkov S.N., Charkin D.O., Arsent’ev M.Yu. et al. // Inorg. Chem. 2020. V. 59. P. 2655. https://doi.org/10.1021/acs.inorgchem.0c00306
- Volkov S.N., Charkin D.O., Firsova V.A. et al. // Inorg. Chem. 2023. V. 62. P. 30. https://doi.org/10.1021/acs.inorgchem.2c03680
- Volkov S.N., Charkin D.O., Manelis L.S. et al. // Solid State Sci. 2022. V. 125. P. 106831. https://doi.org/10.1016/j.solidstatesciences.2022.106831
- Копылова Ю.О., Волков С.Н., Аксенов С.М. и др. // Журн. структур. химии. 2024. Т. 65. С. 132981. https://doi.org/10.26902/JSC_id132981
- Volkov S.N., Charkin D.O., Marsiy I.A. et al. // J. Cryst. Growth. 2024. V. 644. P. 127837. https://doi.org/10.1016/j.jcrysgro.2024.127837
- Wang R., Zhong Y., Dong X. et al. // Inorg. Chem. 2023. V. 62. P. 4716. https://doi.org/10.1021/acs.inorgchem.3c00233
- Huai L., Liu W., Zhang B.-B. et al. // New J. Chem. 2024. V. 48. P. 13805. https://doi.org/10.1039/D4NJ01687D
- Du Z.P., Zhou Y., Zhao S.G. // Chin. J. Appl. Chem. 2023. V. 40. P. 229. https://doi.org/10.19894/j.issn.1000-0518.220225
- Якубович О.В., Перевозникова И.В., Димитрова О.В. и др. // Докл. РАН. 2002. Т. 387. С. 54. https://doi.org/10.1134/1.1526424
- Chen Z., Pan S., Dong X. et al. // Inorg. Chim Acta. 2013. V. 406. P. 205. https://doi.org/10.1016/j.ica.2013.04.046
- Bai C., Yu H., Han S. et al. // Inorg. Chem. 2014. V. 53. P. 11213. https://doi.org/10.1021/ic501814q
- Wu H., Pan S., Poeppelmeier K.R. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 7786. https://doi.org/10.1021/ja111083x
- Brachtel G., Jansen M. // Z. Anorg. Allg. Chem. 1981. V. 478. P. 13. https://doi.org/10.1002/zaac.19814780703
- Jansen M., Brachte G. // Z. Anorg. Allg. Chem. 1982. V. 489. P. 42. https://doi.org/10.1002/zaac.19824890106
- Jansen M., Scheld W. // Z. Anorg. Allg. Chem. 1981. V. 477. P. 85. https://doi.org/10.1002/zaac.19814770609
- Petříček V., Dušek M., Plášil J. // Z. Kristallogr. Cryst. Mater. 2016. V. 231. P. 583. https://doi.org/10.1515/zkri-2016-1956
- Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. Cryst. Mater. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
- Petříček V., Palatinus L., Plášil J. et al. // Z. Kristallogr. Cryst. Mater. 2023. V. 238. P. 271. https://doi.org/10.1515/zkri-2023-0005
- Gagné O.C., Hawthorne F.C. // Acta Cryst. B. 2017. V. 73. P. 956. https://doi.org/10.1107/S2052520617010988
- Hawthorne F.C. // Am. Mineral. 2015. V. 100. P. 696. https://doi.org/10.2138/am-2015-5114
- Jansen M. // Angew. Chem. Int. Ed. 1987. V. 26. P. 1098. https://doi.org/10.1002/anie.198710981
- Schmidbaur H., Schier A. // Angew. Chem. Int. Ed. 2015. V. 54. P. 746. https://doi.org/10.1002/anie.201405936
- Filatov S.K., Bubnova R.S. // Phys. Chem. Glasses. 2000. V. 41. P. 216.
- Woller K.-H., Heller G. // Z. Kristallogr. Cryst. Mater. 1981. V. 156. P. 151. https://doi.org/10.1524/zkri.1981.156.1-2.151
- Giese R.F. // Science. 1966. V. 154. P. 1453. https://doi.org/10.1126/science.154.3755.1453
- Kaußler C., Kieslich G. // J. Appl. Cryst. 2021. V. 54. P. 306. https://doi.org/10.1107/S1600576720016386
- Hornfeck W. // Acta Cryst. 2020. V. 76. P. 534. https://doi.org/10.1107/S2053273320006634
- Krivovichev S.V. // Acta Cryst. B. 2016. V. 72. P. 274. https://doi.org/10.1107/S205252061501906X
Arquivos suplementares
