Computer simulation of AgI|Si3O6 complex nanocomposites in single-wall carbon nanotubes
- Autores: Petrov А.V.1, Murin I.V.1, Ivanov-Schitz A.K.2
- 
							Afiliações: 
							- St.-Petersburg State University
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
 
- Edição: Volume 70, Nº 1 (2025)
- Páginas: 119-125
- Seção: НАНОМАТЕРИАЛЫ, КЕРАМИКА
- URL: https://cardiosomatics.ru/0023-4761/article/view/686187
- DOI: https://doi.org/10.31857/S0023476125010169
- EDN: https://elibrary.ru/IRZPTD
- ID: 686187
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The method of molecular dynamics has been used to simulate heteronanostructures formed when silver iodide and silicon oxide nanoparticles are filling single-walled carbon nanotubes of the “armchair” type (12,12). The results of computer modeling show that stable nanostructured “internal nanocomposites” with AgI inclusions and silicon oxide clusters of various configurations can be formed in such tubes. Si3O6 clusters of linear and planar types have varying degrees of influence on the mobility of silver ions in the studied complex heteronanostructures of AgI|Si3O6@SWCNT.
Texto integral
 
												
	                        Sobre autores
А. Petrov
St.-Petersburg State University
							Autor responsável pela correspondência
							Email: a.petrov@spbu.ru
				                					                																			                								
Институт химии
Rússia, St-PetersburgI. Murin
St.-Petersburg State University
														Email: a.petrov@spbu.ru
				                					                																			                								
Институт химии
Rússia, St-PetersburgA. Ivanov-Schitz
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: a.petrov@spbu.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Mekuye B., Abera B. // Nano Select. 2023. V. 4. P. 486. https://doi.org/10.1002/nano.202300038
- Baig N., Kammakakam I., Falath W. // Mater. Adv. 2021. V. 2. P. 1821. https://doi.org/ 10.1039/d0ma00807a
- Saleh H.M., Hassan A.I. // Sustainability. 2023. V. 15. № 14. P. 10891. https://doi.org/10.3390/su151410891
- Rizvi M., Gerengi H., Gupta P. // ACS Symp. Ser. 2022. V. 1418. P. 1. https://doi.org/10.1021/bk-2022-1418.ch001
- Rao R., Pint C.L., Islam A.E. et al. // ACS Nano. 2018. V. 12. P. 11756. https://doi.org/10.1021/acsnano.8b06511
- Zhang Y., Rhee K.Y., Hui D. et al. // Compos. B. Eng. 2018. V. 143. P. 19. https://doi.org/10.1016/j.compositesb.2018.01.028
- Jadoun S., Chauhan N.P.S., Chinnam S. et al. // Biomedical Materials Devices. 2023. V. 1. P. 351. https://doi.org/10.1007/s44174-022-00009-0
- Barbaros I., Yang Y., Safaei B. et al. // Nanotechnol. Rev. 2022. V. 11. P. 321. https://doi.org/10.1515/ntrev-2022-0017
- Ilie A., Crampin S., Karlsson L., Wilson M. // Nano Res. 2012. V. 5. P. 833. https://doi.org/10.1007/s12274-012-0267-5
- Eatemadi M., Daraee H., Karimkhanloo H. et al. // Nanoscale Res. Let. 2014. V. 9. P. 393. https://doi.org/10.1186/1556-276X-9-393
- Rakhi R.B. // Nanocarbon and its Composites / Eds. Khan A. et al. Woodhead Publishing, 2019. P. 489. https://doi.org/10.1016/B978-0-08-102509-3.00016-X
- Sandoval S., Tobias G., Flahaut E. // Inorganica Chim. Acta. 2019. V. 492. P. 66. https://doi.org/10.1016/j.ica.2019.04.004
- Ates M., Eker A.A., Eker B. // J. Adhesion Sci. Technol. 2017. V. 31. P. 1. https://doi.org/10.1080/01694243.2017.1295625
- Poudel Y.R., Li W. // Mater. Today Phys. 2018. V. 7. P. 74. https://doi.org/10.1016/j.mtphys.2018.10.002
- Kharlamova M.V., Kramberger C. // Nanomaterials. 2021. V. 11. P. 2863. https://doi.org/10.3390/nano11112863
- Li L., Yang H., Zhou D. et al. // J. Nanomater. 2014. V. 2014. Art. 187891. https://doi.org/10.1155/2014/187891
- Nwanno C.E., Li W. // Nano Res. 2023. V. 16. P. 12384. https://doi.org/10.1007/s12274-023-6006-2
- Xiong J.Z., Yang Z.C., Guo X.L. et al. // Tungsten. 2024. V. 6. P. 174. https://doi.org/10.1007/s42864-022-00177-y
- Zhang D., Ye Z., Liu Z. et al. // Energy Storage Sci. Technol. 2023. V. 12. P. 2095. https://doi.org/10.19799/j.cnki.2095-4239.2023.0178
- Hou Z.-d., Gao Y.-y., Zhang Y. et al. // New Carbon Mater. 2023. V. 38. P. 230. https://doi.org/10.1016/S1872-5805(23)60725-5
- Thauer E., Ottmann A., Schneider P. et al. // Molecules. 2020. V. 25. P. 1064. https://doi.org/10.3390/molecules25051064
- Babkin A.V., Kubarkov A.V., Drozhzhin O.A. et al. // Dokl. Chem. 2023. V. 508. P. 1. https://doi.org/10.1134/S001250082360013X
- Enyashin A.N. // Comput. Mater. Discovery. 2018. P. 352. https://doi.org/10.1039/9781788010122-00352
- Shunaev V.V., Petrunin A.A., Zhan H. et al. // Materials. 2023. V. 16. P. 3270. https://doi.org/10.3390/ma16083270.
- Zare Y., Yop Rhee K., Park S.-J. // Results Phys. 2019. V. 15. P. 102562. https://doi.org/10.1016/j.rinp.2019.102562
- Vivanco-Benavides L.E., Martínez-González C.L., Mercado-Zúñiga C. et al. // Comput. Mater. Sci. 2022. V. 201. P. 110939. https://doi.org/10.1016/j.commatsci.2021.110939
- Eliseev A.A., Yashina L.V., Brzhezinskaya M.M. et al. // Carbon. 2010. V. 48. P. 2708. https://doi.org/10.1016/j.carbon.2010.02.037
- Baldoni M., Leoni S., Sgamellott A.I. et al. // Small. 2007. V. 3. P. 1730. https://doi.org/10.1002/smll.200700296
- Kumar S., Nehra M., Kedia D. et al. // Prog. Energy Combust. Sci. 2018. V. 64. P. 219. https://doi.org/10.1016/j.pecs.2017.10.005
- Готлиб И.Ю., Иванов-Шиц А.К., Мурин И.В. и др. // Неорган. матер. 2010. Т. 46. С. 1509.
- Gotlib Yu., Ivanov-Schitz A.K., Murin I.V. et al. // Solid State Ionics. 2011. V. 188. P. 6. https://doi.org/10.1016/j.ssi.2010.11.020
- Готлиб И.Ю., Иванов-Шиц А.К., Мурин И.В. и др. // ФТТ. 2011. Т. 53. С. 2256.
- Gotlib I.Yu., Ivanov-Schitz A.K., Murin I.V. et al. // J. Phys. Chem. C. 2012. V. 116. P. 19554. https://doi.org/10.1021/jp305518t
- Готлиб И.Ю., Иванов-Шиц А.К., Мурин И.В. и др. // ФТТ. 2014. Т. 56. № 7. С. 1420.
- Уваров Н.Ф. Композиционные твердые электролиты. Новосибирск: Изд-во СО РАН. 2008. 258 с.
- Petrov A.V., Salamatov M.S., Ivanov-Schitz A.K. et al. // Ionics. 2021. V. 27. P. 1255. https://doi.org/10.1007/s11581-020-03710-6
- Петров А.В., Мурин И.В., Иванов-Шиц А.К. // Журн. общ. химии. 2017. Т. 87. C. 1062.
- Mekky H. Preprint. https://doi.org/10.21203/rs.3.rs-3951310/v1
- Rappé A.K., Casewit C.J., Colwell K.S. et al. // J. Am. Chem. Soc. 1992. V. 114. P. 10024. https://doi.org/10.1021/ja00051a040
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






