Dissymmetrization in eudialyte-group minerals. I. A model of ordered cation arrangement in the crystal structure of amableite-(Ce) using the P3 symmetry
- Autores: Rastsvetaeva R.K.1, Aksenov S.M.2, Gridchina V.M.1, Chukanov N.V.3
- 
							Afiliações: 
							- Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov institute”
- Kola Science Center, Russian Academy of Sciences
- FRC of Problems of Chemical Physics and Medicinal Chemistry, RAS
 
- Edição: Volume 69, Nº 5 (2024)
- Páginas: 787-794
- Seção: СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://cardiosomatics.ru/0023-4761/article/view/673697
- DOI: https://doi.org/10.31857/S0023476124050047
- EDN: https://elibrary.ru/ZDOJHZ
- ID: 673697
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The crystal structure of the recently discovered eudialyte group mineral, amabellite-(Ce) Na15[(Ce1.5Na1.5)Mn3]Mn2Zr3£Si[Si24O69(OH)3](OH)2 · H2O, found in the hyperagpaitic pegmatite of the Saint-Amable massif (Canada), has been solved by X-ray structural analysis within the space group R3. Amabellite-(Ce) is a member of the eudialyte group with the lowest calcium content and differs from other members of this group by the dominance of lanthanides in the part of the edge-sharing octahedra of the six-membered ring. The unit cell parameters of the mineral are: a = 14.1340(2), c = 30.378(1) Å, V = 5255.6(3) ų. A model of the cation distribution in the crystal structure of amabellite-(Ce) within the low-symmetry space group P3 has been proposed. The obtained 162 independent positions were refined in the isotropic-anisotropic approximation of atomic displacements using 3968 F > 3σ(F), R = 4.6%. Despite the fairly close results, the transition from space group R3 to P3 allows for more detailed information on the local distribution of a number of elements over the framework positions. A comparison was made between the crystal structure models of amabellite within the symmetries R3 and P3, as well as other low-calcium eudialyte group minerals previously studied within several space groups.
Texto integral
 
												
	                        Sobre autores
R. Rastsvetaeva
Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov institute”
							Autor responsável pela correspondência
							Email: rast.crys@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
S. Aksenov
Kola Science Center, Russian Academy of Sciences
														Email: rast.crys@gmail.com
				                					                																			                								
Laboratory of Arctic Mineralogy and Material Sciences, Geological Institute
Rússia, ApatityV. Gridchina
Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov institute”
														Email: rast.crys@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
N. Chukanov
FRC of Problems of Chemical Physics and Medicinal Chemistry, RAS
														Email: rast.crys@gmail.com
				                					                																			                												                	Rússia, 							Chernogolovka						
Bibliografia
- Urusov V.S. // Geol. Ore Deposits. 2007. V. 49. P. 497. https://doi.org/10.1134/S107570150707001X
- Bermanec M., Vidović N., Gavryliv L. et al. // Geosci. Data J. 2024. V. 11. P. 69. https://doi.org/10.1002/gdj3.177
- Bermanec M., Vidović N., Ma X., Hazen R.M. // Minerals. 2024. V. 14. P. 387. https://doi.org/10.3390/min14040387
- Krivovichev S.V., Krivovichev V.G., Hazen R.M. // Eur. J. Mineral. 2018. V. 30. P. 321. https://doi.org/10.1127/ejm/2018/0030-2694
- Holland T., Powell R. // Am. Mineral. 1996. V. 81. P. 1425. https://doi.org/10.2138/am-1996-11-1215
- Yang H., Hircschmann M.M. // Am. Mineral. 1995. V. 80. P. 916. https://doi.org/10.2138/am-1995-9-1006
- Mottana A., Murata T., Wu Z.Y. // Phys. Chem. Mineral. 1997. V. 24. P. 500. https://doi.org/10.1007/S002690050065
- Паникоровский Т.Л., Яковенчук В.Н., Кривовичев С.В. // Зап. Рос. минерал. о-ва. 2023. Т. 152. № 2. С. 94. https://doi.org/10.31857/S0869605523020041
- Hawthorne F.C. // Eur. J. Mineral. 2016. V. 28. P. 513. https://doi.org/10.1127/ejm/2016/0028-2538
- Зарубина Е.С., Расцветаева Р.К., Русаков В.С. и др. // Журн. структур. химии. 2024. Т. 65. № 6. С. 127721. https://doi.org/10.26902/JSC_id127721
- Аксенов С.М., Зарубина Е.С., Расцветаева Р.К. и др. // Литосфера. 2024. Т. 24. № 2. С. 264. https://doi.org/10.24930/1681-9004-2024-24-2-264-283
- Аксенов С.М., Портнов А.М., Чуканов Н.В. и др. // Кристаллография. 2016. Т. 61. № 3. С. 380. https://doi.org/10.7868/S0023476116030024
- Расцветаева Р.К., Аксенов С.М., Чуканов Н.В., Треммель Г. // Докл. РАН. 2013. Т. 452. № 5. С. 525. https://doi.org/10.7868/S0869565213300154
- Чуканов Н.В., Пеков И.В., Расцветаева Р.К. // Успехи химии. 2004. Т. 73. С. 227. https://doi.org/10.1070/RC2004v073n03ABEH000825
- Chukanov N.V., Vigasina M.F., Rastsvetaeva R.K. et al. // J. Raman Spectr. 2022. V. 53. P. 1188. https://doi.org/10.1002/jrs.6343
- Chukanov N.V., Rastsvetaeva R.K., Zubkova N.V. et al. // J. Raman Spectr. 2024. https://doi.org/10.1002/jrs.6656
- Вайтиева Ю.А., Чуканов Н.В., Вигасина М.Ф. и др. // Журн. структур. химии. 2024. Т. 65. № 7. С. 128968. https://doi.org/10.26902/JSC_id128968
- Mikhailova J.A., Stepenshchikov D.G., Kalashnikov A.O., Aksenov S.M. // Minerals. 2022. V. 12. P. 224. https://doi.org/10.3390/min12020224
- Расцветаева Р.К., Чуканов Н.В., Аксенов С.М. Минералы группы эвдиалита: кристаллохимия, свойства, генезис. Нижний Новгород: Изд-во НГУ, 2012. 229 с.
- Rastsvetaeva R.K., Chukanov N.V., Pekov I.V. et al. // Minerals. 2020. V. 10. P. 587. https://doi.org/10.3390/min10070587
- Rastsvetaeva R.K., Chukanov N.V. // Minerals. 2020. V. 10. P. 720. https://doi.org/10.3390/min10080720
- Расцветаева Р.К., Хомяков А.П., Некрасов Ю.В. // Кристаллография. 1999. Т. 44. № 5. C. 824. eLibrary ID: 14997806
- Аксенов С.М., Расцветаева Р.К. // Кристаллография. 2013. Т. 58. № 5. С. 660. https://doi.org/10.7868/S0023476113040024
- Aksenov S.M., Kabanova A.A., Chukanov N.V. et al. // Acta Cryst. B. 2022. V. 78. P. 80. https://doi.org/10.1107/S2052520621010015
- Розенберг К.А., Расцветаева Р.К., Аксенов С.М. // Сб. докл. Mеждунар. минералог. семинара “Минералогическая интервенция в микро- и наномир”. Сыктывкар, 9–11 июня 2009. С. 149.
- Расцветаева Р.К., Чуканов Н.В. // Кристаллография. 2021. Т. 66. № 6. С. 884. https://doi.org/10.31857/S0023476121060308
- Расцветаева Р.К. // Вестн. геонаук. 2023. № 8. С. 26. https://doi.org/10.19110/geov.2023.8.3
- Chukanov N.V., Zolotarev A.A., Schäfer Ch. et al. // Mineral. Mag. 2024. https://doi.org/10.1180/mgm.2024.26.
- Андрианов В.И. // Кристаллография. 1987. Т. 32. С. 228.
- Hawthorne F.C., Ungaretti L., Oberti R. // Can. Mineral. 1995. V. 33. P. 907.
- Chukanov N.V., Aksenov S.M., Pekov I.V. et al. // Can. Mineral. 2020. V. 58. P. 421. https://doi.org/10.3749/canmin.2000006
- Екименкова И.А., Расцветаева Р.К., Чуканов Н.В. // Докл. РАН. 2000. T. 374. № 3. C. 352.
- Johnsen O., Grice J.D., Gault R.A. // Can. Mineral. 1999. V. 37. P. 865.
- Rastsvetaeva R.K., Khomyakov A.P. // Crystallography Reports. 2000. V. 45. № 2. P. 219. https://doi.org/10.1134/1.171167
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 

