Interaction of ferroelectric domain walls and shape of equilibrium repolarization nuclei
- Autores: Belov A.Y.1
- 
							Afiliações: 
							- National Research Center “Kurchatov Institute”
 
- Edição: Volume 70, Nº 4 (2025)
- Páginas: 577–582
- Seção: REAL STRUCTURE OF CRYSTALS
- URL: https://cardiosomatics.ru/0023-4761/article/view/688080
- DOI: https://doi.org/10.31857/S0023476125040055
- EDN: https://elibrary.ru/JFPZUS
- ID: 688080
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The growth of a repolarization nucleus in an electric field is hindered by cohesive forces acting near its tips on the adjacent domain walls. They can reach large values when the distance between the domain walls becomes comparable to their thickness. It is shown that the cohesive forces are expressed in terms of the coefficients of the Ginzburg–Landau energy expansion, which includes a gradient contribution. For a uniaxial ferroelectric, an estimate of the maximum value of the internal field associated with the gradient interaction of the domain walls is obtained. Its relation to the internal coercive field Ec0 in the Ginzburg–Landau theory is E* max/Ec0 = 3√3/8 ≈ 0.65.
Texto integral
 
												
	                        Sobre autores
A. Belov
National Research Center “Kurchatov Institute”
							Autor responsável pela correspondência
							Email: belov@crys.ras.ru
				                					                																			                								
Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics
Rússia, MoscowBibliografia
- Инденбом В.Л. // Изв. AH CCCP. Сep. физ. 1979. Т. 43. С. 1631.
- Инденбом В.Л., Чамров В.А. // Кристаллография. 1980. Т. 25. С. 213.
- Chen I.W., Wang Y. // Appl. Phys. Lett. 1999. V. 75. P. 4186. https://doi.org/10.1063/1.125577
- Chen I.W., Wang I. // Ferroelectrics. 1998. V. 206. P. 245. https://doi.org/10.1080/00150199808009162
- Belov A.Yu., Kreher W.S., Nicolai M. // Ferroelectrics. 2009. V. 391. P. 42. https://doi.org/10.1080/00150190903001128
- Belov A.Yu., Kreher W.S. // Ferroelectrics. 2009. V. 391. P. 12. https://doi.org/10.1080/00150190903001052
- Belov A.Yu., Kreher W.S. // Ferroelectrics. 2007. V. 351. P. 79. https://doi.org/10.1080/00150190701353093
- Viola G., Chong K.B., Guiu F., Reece M.J. // J. Appl. Phys. 2014. V. 115. P. 034106. https://doi.org/10.1063/1.4856235
- Du X., Chen I.W. // Mater. Res. Soc. Symp. Proc. 1998. V. 493. P. 311. https://doi.org/10.1557/PROC-493-311
- Nam S.M., Kil Y.B., Wada S., Tsurumi T. // Jpn. J. Appl. Phys. 2003. V. 42. № 12B. P. L1519. https://doi.org/10.1143/JJAP.42.L1519
- Tsurumi T., Num S.M., Kil Y.B., Wada S. // Ferroelectrics. 2001. V. 259. P. 43. https://doi.org/10.1080/00150190108008714
- Lawless W.N. // Phys. Rev. B. 1978. V. 17. P. 1458. https://doi.org/10.1103/PhysRevB.17.1458
- Jung D.J., Dawber M., Scott J.F. et al. // Integr. Ferroelectr. 2002. V. 48. P. 59. https://doi.org/10.1080/10584580215437
- Mulaosmanovic H., Ocker J., Müller S. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 3792. https://doi.org/10.1021/acsami.6b13866
- Borowiak A.S., Garcia-Sanchez A., Mercone S. // 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM). IEEE. New York, 2016. P. 1. https://doi.org/10.1109/ISAF.2016.7578088
- Белов А.Ю. // Письма в ЖЭТФ. 2018. Т. 108. С. 225.
- Landauer R. // J. Appl. Phys. 1957. V. 28. P. 227. https://doi.org/10.1063/1.1722712
- Tagantsev A.K., Stolichnov I., Setter N. // Phys. Rev. B. 2002. V. 66. P. 214109. https://doi.org/10.1103/PhysRevB.66.214109
- Belov A.Yu. // Ferroelectrics. 2019. V. 544. P. 27. https://doi.org/10.1080/00150193.2019.1598180
- Belov A.Yu. // Ferroelectrics. 2022. V. 590. P. 19. https://doi.org/10.1080/00150193.2022.2037935
- Belov A.Yu. // Mater. Phys. Mech. 2024. V. 52. P. 18. https://doi.org/10.18149/MPM.5212024_2
- Belov A.Yu. // Ferroelectrics. 2025. V. 619. P. 25. https://doi.org/10.1080/00150193.2024.2327956
- Barenblatt G.I. // Adv. Appl. Mech. 1962. V. 7. P. 55. https://doi.org/10.1016/S0065-2156(08)70121-2
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



