Possible role of microbial communities of Lake Baikal bottom sediments in the formation of authigenic siderites abnormally enriched in 13C isotope
- Authors: Bukin S.V.1, Lomakina A.V.1, Pogodaeva T.V.1, Khlystov O.M.1, Zemskaya T.I.1, Krylov A.A.1,2,3
-
Affiliations:
- Limnological Institute SB RAS
- All-Russian Research Institute of Geology and Mineral Resources of the World Ocean named after academician I.S. Gramberg (VNIIOkeangeologiya)
- St. Petersburg State University, Institute of Earth Sciences
- Issue: Vol 94, No 5 (2025)
- Pages: 398-416
- Section: EXPERIMENTAL ARTICLES
- URL: https://cardiosomatics.ru/0026-3656/article/view/691980
- DOI: https://doi.org/10.7868/S3034546425050041
- ID: 691980
Cite item
Abstract
Precipitation of authigenic carbonates during diagenesis of bottom sediments is often a by-product of microbial activity, and the isotopic characteristics of such carbonate minerals are determined by the effects of carbon isotope fractionation during enzymatic reactions. The composition of microbial communities was estimated using the 16S rRNA gene metabarcoding method, and the chemical composition of pore waters of bottom sediments of three mud volcanoes of Lake Baikal containing siderites (FeCO3) anomalously enriched in the 13C isotope (δ13C +7.24…+35.02‰ VPDB), the formation mechanisms of which are currently unknown, were analyzed. The obtained data are consistent with the hypothesis that siderite sedimentation may be associated with local zones of active biogenic destruction of organic matter, but it is suggested that the role of microbial communities in this process may be limited to the reduction of crystalline forms of Fe(III) oxyhydroxides to siderite or replenishment of the Fe(Ⅱ) pool, rather than dissolved inorganic carbon (DIC). In this case, the factor causing the sedimentation of authigenic siderites enriched in the 13C isotope may be the supply of DIC or gaseous CO2 with a deep fluid flow, the isotopic characteristics of which will largely determine the δ13C values of carbonates in the sediments of mud volcanoes of Lake Baikal.
About the authors
S. V. Bukin
Limnological Institute SB RAS
Email: sergeibukin@lin.irk.ru
Irkutsk, 664033, Russia
A. V. Lomakina
Limnological Institute SB RAS
Email: sergeibukin@lin.irk.ru
Irkutsk, 664033, Russia
T. V. Pogodaeva
Limnological Institute SB RAS
Email: sergeibukin@lin.irk.ru
Irkutsk, 664033, Russia
O. M. Khlystov
Limnological Institute SB RAS
Email: sergeibukin@lin.irk.ru
Irkutsk, 664033, Russia
T. I. Zemskaya
Limnological Institute SB RAS
Email: sergeibukin@lin.irk.ru
Irkutsk, 664033, Russia
A. A. Krylov
Limnological Institute SB RAS; All-Russian Research Institute of Geology and Mineral Resources of the World Ocean named after academician I.S. Gramberg (VNIIOkeangeologiya); St. Petersburg State University, Institute of Earth Sciences
Author for correspondence.
Email: sergeibukin@lin.irk.ru
Irkutsk, 664033, Russia; St. Petersburg, 190121, Russia; St. Petersburg, 199034, Russia
References
- Вологина Е. Г., Кулагина Н. В. Характеристика поверхностных осадков Бугульдейской перемычки озера Байкал // Известия Иркутского государственного университета. Серия “Науки о Земле”. 2014. Т. 10. С. 57–66.
- Гранина Л. З., Мац В. Д., Федорин М. А. Железомарганцевые образования в регионе оз. Байкал // Геология и геофизика. 2010. Т. 51. С. 835–848.
- Granina L. Z., Mats V. D., Phedorin M. A. Iron-manganese formations in the Baikal region // Russ. Geol. Geophys. 2010. V. 51. P. 650–660. https://doi.org/10.1016/j.rgg.2010.05.006
- Заварзина Д. Г. Образование магнетита и сидерита термофильными железоредуцирующими бактериями // Палеонтологический журнал. 2004. T. 6. C. 3–8.
- Zavarzina D. G. Formation of magnetite and siderite by thermophilic Fe(III)-reducing bacteria // Paleontol. J. 2004. V. 38. № 6. P. 585–589.
- Захарова Ю. Р., Парфенова В. В., Гранина Д. З., Кравченко О. С., Земская Т. И. Распределение культивируемых железо и марганецокисляющих бактерий в донных осадках озера Байкал // Биология внутренних вод. 2010. № 4. С. 22–30.
- Zakharova Yu.R., Parfenova V. V., Granina L. Z., Kravchenko O. S., Zemskaya T. I. Distribution of iron- and manganese-oxidizing bacteria in the bottom sediments of Lake Baikal // Inland Water Biol. 2010. V. 3. P. 313–321. https://doi.org/10.1134/s1995082910040036
- Земская Т. И., Букин С. В., Ломакина А. В., Павлова О. Н. Микроорганизмы донных отложений Байкала – самого глубокого и древнего озера мира // Микробиология. 2021. Т. 90. С. 286–303. https://doi.org/10.31857/S0026365621030174
- Zemskaya T. I., Bukin S. V., Lomakina A. V., Pavlova O. N. Microorganisms in the sediments of Lake Baikal, the deepest and oldest lake in the world // Microbiology (Moscow). 2021. V. 90. P. 298–313. https://doi.org/10.1134/s0026261721030140
- Злобина О. М., Москвин В. И., Хлыстов О. М. Аутигенное минералообразование в современных осадках оз. Байкал // Геология и минеральные сырьевые ресурсы России. 2011. № 4. С. 48–56.
- Князева Л. М. Вивианит в донных илах озера Байкал // Доклады АН СССР. 1964. T. 97. № 3. С. 519–522.
- Крылов А. А., Хлыстов О. М., Семёнов П. Б., Сагидуллин А. К., Малышев С. А., Букин С. В., Видищева О. Н., Манаков А. Ю., Исмагилов З. Р. Источники углеводородных газов в грязевом вулкане кедр, южная котловина озера Байкал: результаты экспериментальных исследований // Литология и полезные ископаемые. 2023. Т. 6. С. 542–553. https://doi.org/10.31857/S0024497X23700283
- Krylov A. A., Khlystov O. M., Semenov P. B., Sagidullin A. K., Malyshev S. A., Bukin S. V., Vidischeva O. N., Manakov A.Yu., Ismagilov Z. R. Sources of hydrocarbon gases in the Kedr mud volcano, southern basin of Lake Baikal: results of experimental studies // Lithol. Miner. Resour. 2023. V. 58. P. 534–543. https://doi.org/10.1134/S0024490223700335
- Леин А. Ю. Аутигенное карбонатообразование в океане // Литология и полезные ископаемые. 2004. № 1. С. 3–35.
- Lein A. Y. Authigenic carbonate formation in the ocean // Lithol. Miner. Resour. 2004. V. 39. P. 1–30. https://doi.org/10.1023/b:limi.0000010767.52720.8f
- Мизандронцев И. Б. К геохимии грунтовых растворов // Динамика Байкальской впадины. Новосибирск: Наука, 1975. С. 203–230.
- Мизандронцев И. Б., Лейбович Л. З. Грунтовые растворы озер // История больших озер Центральной Субарктики. Новосибирск: Наука, 1981. С. 80–100.
- Погодаева Т. В., Земская Т. И., Голобокова Л. П., Хлыстов О. М., Минами Х., Сакагами Х. Особенности химического состава поровых вод донных отложений различных районов озера Байкал // Геология и геофизика. 2007. Т. 48. С. 1144–1160.
- Pogodaeva T. V., Zemskaya T. I., Golobokova L. P., Khlystov O. M., Minami H., Sakagami H. Chemical composition of pore waters of bottom sediments in different Baikal basins // Russ. Geol. Geophys. (Novosibirsk). 2007. V. 48. P. 886–900. https://doi.org/10.1016/j.rgg.2007.02.012
- Aloisi G., Bouloubassi I., Heijs S. K., Pancost R. D., Pierre C., Sinninghe Damsté J. S., Gottschal J. C., Forney L. J., Rouchy J.-M. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps // Earth Planet Sci. Lett. 2002. V. 203. P. 195–203. https://doi.org/10.1016/s0012-821x(02)00878-6
- Aloisi G., Pogodaeva T. V., Poort J., Khabuev A. V., Kazakov A. V., Akhmanov G. G., Khlystov O. M. Biogeochemical processes at the Krasniy Yar seepage area (Lake Baikal) and a comparison with oceanic seeps // Geo-Mar. Lett. 2019. V. 39. P. 59–75. https://doi.org/10.1007/s00367-019-00560-8
- Bachan A., Kump L. R. The rise of oxygen and siderite oxidation during the Lomagundi Event // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. 6562–6567. https://doi.org/10.1073/pnas.1422319112
- Baker B. J., Saw J. H., Lind A. E., Lazar C. S., Hinrichs K.-U., Teske A. P., Ettema T. J.G. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea // Nat. Microbiol. 2016. V. 1. Art. 16002. https://doi.org/10.1038/nmicrobiol.2016.2
- Begmatov S., Beletsky A. V., Dedysh S. N., Mardanov A. V., Ravin N. V. Genome analysis of the candidate phylum MBNT15 bacterium from a boreal peatland predicted its respiratory versatility and dissimilatory iron metabolism // Front. Microbiol. 2022. V. 13 Art. 951761. https://doi.org/10.3389/fmicb.2022.951761
- Bryce C., Blackwell N., Schmidt C., Otte J., Huang Y., Kleindienst S., Tomaszewski E., Schad M., Warter V., Peng C., Byrne J. M., Kappler A. Microbial anaerobic Fe(II) oxidation – ecology, mechanisms and environmental implications // Environ. Microbiol. 2018. V. 20. P. 3462–3483. https://doi.org/10.1111/1462-2920.14328
- Cai C., Leu A. O., Xie G.-J., Guo J., Feng Y., Zhao J.-X., Tyson G. W., Yuan Z., Hu S. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction // ISME J. 2018. V. 12. P. 1929–1939. https://doi.org/10.1038/s41396-018-0109-x
- Callahan B. J., McMurdie P.J., Rosen M. J., Han A. W., Johnson A. J.A., Holmes S. P. DADA2: High-resolution sample inference from Illumina amplicon data // Nat. Methods. 2016. V. 13. P. 581–583. https://doi.org/10.1038/nmeth.3869
- Callender E., Granina L. Transition metal geochemistry of sedimentary pore fluids associated with hydrothermal activity in Lake Baikal, Russia // Proc. of the 7th Int. symp. on Water-Rock Interaction. Rotterdam: Brookfeild, 1992. P. 621–626.
- Chen L., Li L., Zhang S., Zhang W., Xue K., Wang Y., Dong X. Anaerobic methane oxidation linked to Fe(III) reduction in a Candidatus Methanoperedens-enriched consortium from the cold Zoige wetland at Tibetan Plateau // Environ. Microbiol. 2022. V. 24. P. 614–625. https://doi.org/10.1111/1462-2920.15848
- Cloarec L. A., Bacchetta T., Bruto M., Leboulanger C., Grossi V., Brochier-Armanet C., Flandrois J.-P., Zurmely A., Bernard C., Troussellier M., Agogué H., Ader M., Oger-Desfeux C., Oger P. M., Vigneron A., Hugoni M. Lineage-dependent partitioning of activities in chemoclines defines Woesearchaeota ecotypes in an extreme aquatic ecosystem // Microbiome. 2024. V. 12. Art. 249. https://doi.org/10.1186/s40168-024-01956-0
- Dittrich M., Kurz P., Wehrli B. The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake // Geomicrobiol. J. 2004. V. 21. P. 45–53. https://doi.org/10.1080/01490450490253455
- Dong H., Fredrickson J. K., Kennedy D. W., Zachara J. M., Kukkadapu R. K., Onstott T. C. Mineral transformations associated with the microbial reduction of magnetite // Chem. Geol. 2000. V. 169. P. 299–318. https://doi.org/10.1016/s0009-2541(00)00210-2
- Granina L. Z., Parfenova V. V., Zemskaya T. I., Zakharova Yu.R., Golobokova L. P. On iron and manganese oxidizing microorganisms in sedimentary redox cycling in Lake Baikal // Berliner Palaobiologische Abhandlungen. 2003. V. 4. P. 121–128.
- Fillol M., Auguet J.-C., Casamayor E. O., Borrego C. M. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage // ISME J. 2015. V. 10. P. 665–677. https://doi.org/10.1038/ismej.2015.143
- Fujita Y., Ferris F. G., Lawson R. D., Colwell F. S., Smith R. W. Subscribed content calcium carbonate precipitation by ureolytic subsurface bacteria // Geomicrobiol. J. 2000. V. 17. P. 305–318. https://doi.org/10.1080/782198884
- Hachikubo A., Minami H., Yamashita S., Khabuev A., Krylov A., Kalmychkov G., Poort J., De Batist M., Chenskiy A., Manakov A., Khlystov O. Characteristics of hydrate-bound gas retrieved at the Kedr mud volcano (southern Lake Baikal) // Sci. Rep. 2020. V. 10. Art. 14747. https://doi.org/10.1038/s41598-020-71410-2
- Huang W.-C., Liu Y., Zhang X., Zhang C.-J., Zou D., Zheng S., Xu W., Luo Z., Liu F., Li M. Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota // Nat. Commun. 2021. V. 12. Art. 5281. https://doi.org/10.1038/s41467-021-25565-9
- Jaquet J.-M., Nirel P., Martignier A. Preliminary investigations on picoplankton-related precipitation of alkaline-earth metal carbonates in meso-oligotrophic Lake Geneva (Switzerland) // J. Limnol. 2013. V. 72. P. 592–605. https://doi.org/10.4081/jlimnol.2013.e50
- Kelts K., Hsü K. J. Freshwater carbonate sedimentation // Lakes / Eds. Lerman A. New York: Springer, 1978. P. 295–323. https://doi.org/10.1007/978-1-4757-1152-3_9
- Khodzher T. V., Domysheva V. M., Sorokovikova L. M., Sakirko M. V., Tomberg I. V. Current chemical composition of Lake Baikal water // Inland Waters. 2017. V. 7. P. 250–258. https://doi.org/10.1080/20442041.2017.1329982
- Krylov A., Khlystov O., Zemskaya T., Minami H., Hachikubo A., Nunokawa Y., Kida M., Shoji H., Naudts L., Poort J., Pogodaeva T. First discovery and formation process of authigenic siderite from gas hydrate-bearing mud volcanoes in fresh water: Lake Baikal, Eastern Siberia // Geophys. Res. Lett. 2008. V. 35. Art. L05405. https://doi.org/10.1029/2007gl032917
- Krylov A. A., Khlystov O. M., Hachikubo A., Minami H., Nunokawa Y., Shoji H., Zemskaya T. I., Naudts L., Pogodaeva T. V., Kida M., Kalmychkov G. V., Poort J. Isotopic composition of dissolved inorganic carbon in the subsurface sediments of gas hydrate bearing mud volcanoes, Lake Baikal: Implications for methane and carbonate origin // Geo-Mar. Lett. 2010. V. 30. P. 427–437. https://doi.org/10.1007/s00367-010-0190-2
- Krylov A. A., Hachikubo A., Minami H., Pogodaeva T. V., Zemskaya T. I., Krzhizhanovskaya M. G., Poort J., Khlystov O. M. Authigenic rhodochrosite from a gas hydrate-bearing structure in Lake Baikal // Int. J. Earth Sci. 2018. V. 107. P. 2011–2022. https://doi.org/10.1007/s00531-018-1584-z
- Krylov A., Khlystov O., Hachikubo A., Minami H., Zemskaya T., Logvina E., Lomakina A., Semenov P. The reconstruction of the mechanisms of problematic authigenic carbonates formation in diagenetic and catagenetic environments associated with the generation/oxidation of hydrocarbons // Limnol. Freshw. Biol. 2020. V. 4. P. 928–930. https://doi.org/10.31951/2658-3518-2020-a-4-928
- Kukkadapu R., Zachara J., Fredrickson J., Kennedy D., Dohnalkova A., McCready D. Ferrous hydroxy carbonate is a stable transformation product of biogenic magnetite // Am. Mineral. 2005. V. 90. P. 510–515. https://doi.org/10.2138/am.2005.1727
- Lindsay M. R., D’Angelo T., Munson-McGee J.H., Saidi-Mehrabad A., Devlin M., McGonigle J., Goodell E., Herring M., Lubelczyk L. C., Mascena C., Brown J. M., Gavelis G., Liu J., Yousavich D. J., Hamilton-Brehm S.D., Hedlund B. P., Lang S., Treude T., Poulton N. J., Stepanauskas R., Moser D. P., Emerson D., Orcutt B. N. Species-resolved, single-cell respiration rates reveal dominance of sulfate reduction in a deep continental subsurface ecosystem // Proc. Nat. Acad. Sci. USA. 2024. V. 121. Art. e2309636121. https://doi.org/10.1073/pnas.2309636121
- Liu C., Kota S., Zachara J. M., Fredrickson J. K., Brinkman C. K. Kinetic analysis of the bacterial reduction of goethite // Environ. Sci. Technol. 2001. V. 35. P. 2482–2490. https://doi.org/10.1021/es001956c
- Liu Y.-F., Qi Z.-Z., Shou L.-B., Liu J.-F., Yang S.-Z., Gu J.-D., Mu B.-Z. Anaerobic hydrocarbon degradation in candidate phylum “Atribacteria” (JS1) inferred from genomics // ISME J. 2019. V. 13. P. 2377–2390. https://doi.org/10.1038/s41396-019-0448-2
- Lloyd K. G., Schreiber L., Petersen D. G., Kjeldsen K. U., Lever M. A., Steen A. D., Stepanauskas R., Richter M., Kleindienst S., Lenk S., Schramm A., Jørgensen B. B. Predominant archaea in marine sediments degrade detrital proteins // Nature. 2013. V. 496. P. 215–218. https://doi.org/10.1038/nature12033
- Lomakina A. V., Bukin S. V., Pogodaeva T. V., Turchyn A. V., Khlystov O. M., Khabuev A. V., Ivanov V. G., Krylov A. A., Zemskaya T. I. Microbial diversity and authigenic siderite mediation in sediments surrounding the Kedr-1 mud volcano, Lake Baikal // Geobiology. 2023. V. 21. P. 770–790. https://doi.org/10.1111/gbi.12575
- Londry K. L., Dawson K. G., Grover H. D., Summons R. E., Bradley A. S. Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri // Org. Geochem. 2008. V. 39. P. 608–621. https://doi.org/10.1016/j.orggeochem.2008.03.002
- Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J.P., Gorby Y. A., Goodwin S. Geobacter metallireducens gen. nov., sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals // Arch. Microbiol. 1993. V. 159. P. 336–344. https://doi.org/10.1007/bf00290916
- Martinez M. A., Woodcroft B. J., Ignacio Espinoza J. C., Zayed A. A., Singleton C. M., Boyd J. A., Li Y.-F., Purvine S., Maughan H., Hodgkins S. B., Anderson D., Sederholm M., Temperton B., Bolduc B., Saleska S. R., Tyson G. W., Rich V. I., Saleska S. R., Tyson G. W., Rich V. I. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov // Syst. Appl. Microbiol. 2019. V. 42. P. 54–66. https://doi.org/10.1016/j.syapm.2018.12.003
- Meister P., Gutjahr M., Frank M., Bernasconi S. M., Vasconcelos C., McKenzie J.A. Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism // Geology. 2011. V. 39. P. 563–566. https://doi.org/10.1130/g31810.1
- Meister P., Reyes C. The carbon-isotope record of the sub-seafloor biosphere // Geosci. 2019. V. 9. Art. 507. https://doi.org/10.3390/geosciences9120507
- Meng J., Xu J., Qin D., He Y., Xiao X., Wang F. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses // ISME J. 2014. V. 8. P. 650–659. https://doi.org/10.1038/ismej.2013.174
- Michaelis W., Seifert R., Nauhaus K., Treude T., Thiel V., Blumenberg M., Knittel K., Gieseke A., Peterknecht K., Pape T., Boetius A., Amann R., Jørgensen B. B., Widdel F., Peckmann J., Pimenov N. V., Gulin M. B. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane // Science. 2002. V. 297. P. 1013–1015. https://doi.org/10.1126/science.1072502
- Miller H. M., Chaudhry N., Conrad M. E., Bill M., Kopf S. H., Templeton A. S. Large carbon isotope variability during methanogenesis under alkaline conditions // Geochim. Cosmochim. Acta. 2018. V. 237. P. 18–31. https://doi.org/10.1016/j.gca.2018.06.007
- Mori K., Yamaguchi K., Sakiyama Y., Urabe T., Suzuki K. Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 2894–2898. https://doi.org/10.1099/ijs.0.010033-0
- Och L. M., Müller B., März C., Wichser A., Vologina E. G., Sturm M. Elevated uranium concentrations in Lake Baikal sediments: Burial and early diagenesis // Chem. Geol. 2016. V. 441. P. 92–105. https://doi.org/10.1016/j.chemgeo.2016.08.001
- Okumura T., Kawagucci S., Saito Y., Matsui Y., Takai K., Imachi H. Hydrogen and carbon isotope systematics in hydrogenotrophic methanogenesis under H2-limited and H2-enriched conditions: implications for the origin of methane and its isotopic diagnosis // Prog. Earth Planet. Sci. 2016. V. 3. Art. 14. https://doi.org/10.1186/s40645-016-0088-3
- Parkhurst D. L., Appelo C. A.J. Description of input and examples for PHREEQC version 3‒A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations // U.S. Geological Survey Techniques and Methods. Denver: U.S. Geological Survey, 2013. 497 p. https://doi.org/10.3133/tm6A43
- Phillips S. C., Hong W.-L., Johnson J. E., Fahnestock M. F., Bryce J. G. Authigenic carbonate formation influenced by freshwater inputs and methanogenesis in coal-bearing strata offshore Shimokita, Japan (IODP Site C0020) // Marine Petrol. Geol. 2018. V. 96. P. 288–303. https://doi.org/10.1016/j.marpetgeo.2018.06.007
- Plée K., Pacton M., Ariztegui D. Discriminating the role of photosynthetic and heterotrophic microbes triggering low-Mg calcite precipitation in freshwater biofilms (Lake Geneva, Switzerland) // Geomicrobiol. J. 2010. V. 27. P. 391–399. https://doi.org/10.1080/01490450903451526
- Pogodaeva T. V., Lopatina I. N., Khlystov O. M., Egorov A. V., Zemskaya T. I. Background composition of pore waters in Lake Baikal bottom sediments // J. Great Lakes Res. 2017. V. 43. P. 1030–1043. https://doi.org/10.1016/j.jglr.2017.09.003
- Pogodaeva T. V., Poort J., Aloisi G., Bataillard L., Makarov M. M., Khabuev A. V., Kazakov A. V., Chensky A. G., Khlystov O. M. Fluid migrations at the Krasny Yar methane seep of Lake Baikal according to geochemical data // J. Great Lakes Res. 2020. V. 46. P. 123–131. https://doi.org/10.1016/j.jglr.2019.08.003
- Roh Y., Zhang C., Vali H., Lauf R., Zhou J., Phelps T. Biogeochemical and environmental factors in Fe biomineralization: magnetite and siderite formation // Clays and Clay Minerals. 2003. V. 51. № 1. P. 83–95. https://doi.org/10.1346/ccmn.2003.510110
- Sahm K., John P., Nacke H., Wemheuer B., Grote R., Daniel R., Antranikian G. High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods // Extremophiles. 2013. V. 17. P. 649–662. https://doi.org/10.1007/s00792-013-0548-2
- Sambrook J., Fritsch E. R., Maniatis T. Molecular Cloning: A Laboratory Manual. NY: Cold Spring Harbor Laboratory Press, 1989. 1659 p.
- Sánchez-Román M., Puente-Sánchez F., Parro V., Amils R. Nucleation of Fe-rich phosphates and carbonates on microbial cells and exopolymeric substances // Front. Microbiol. 2015. V. 6. Art. 1024. https://doi.org/10.3389/fmicb.2015.01024
- Sapota T., Aldahan A., Al-Aasm I.S. Sedimentary facies and climate control on formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia // J. Paleolimnol. 2006. V. 36. P. 245–257. https://doi.org/10.1007/s10933-006-9005-x
- Schrag D. P., Higgins John. A., Macdonald F. A., Johnston D. T. Authigenic carbonate and the history of the global carbon cycle // Science. 2013. V. 339. P. 540–543. https://doi.org/10.1126/science.1229578
- Sekiguchi Y., Muramatsu M., Imachi H., Narihiro T., Ohashi A., Harada H., Hanada S., Kamagata Y. Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio // Int. J. Syst. Evol. Microbiol. 2008. V. 58. P. 2541–2548. https://doi.org/10.1099/ijs.0.2008/000893-0
- Solomon E. A., Spivack A. J., Kastner M., Torres M. E., Robertson G. Gas hydrate distribution and carbon sequestration through coupled microbial methanogenesis and silicate weathering in the Krishna–Godavari Basin, offshore India // Marine Petrol. Geol. 2014. V. 58. P. 233–253. https://doi.org/10.1016/j.marpetgeo.2014.08.020
- Turchyn A. V., Bradbury H. J., Walker K., Sun X. Controls on the precipitation of carbonate minerals within marine sediments // Front. Earth Sci. 2021. V. 9. Art. 618311. https://doi.org/10.3389/feart.2021.618311
- Van Rensbergen P., De Batist M., Klerkx J., Hus R., Poort J., Vanneste M., Granin N., Khlystov O., Krinitsky P. Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal // Geology. 2002. V. 30. P. 631–634. https://doi.org/10.1130/0091-7613(2002)030<0631:smvams>2.0.co;2
- Vuillemin A., Wirth R., Kemnitz H., Schleicher A. M., Friese A., Bauer K. W., Simister R., Nomosatryo S., Ordoñez L., Ariztegui D., Henny C., Crowe S. A., Benning L. G., Kallmeyer J., Russell J. M., Bijaksana S., Vogel H. Formation of diagenetic siderite in modern ferruginous sediments // Geology. 2019. V. 47. P. 540–544. https://doi.org/10.1130/g46100.1
- Wang Y., Wegener G., Hou J., Wang F., Xiao X. Expanding anaerobic alkane metabolism in the domain of Archaea // Nat. Microbiol. 2019. V. 4. P. 595–602. https://doi.org/10.1038/s41564-019-0364-2
- Yu Y., Lee C., Kim J., Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction // Biotechnol. Bioeng. 2005. V. 89. P. 670–679. https://doi.org/10.1002/bit.20347
- Yu T., Fu L., Wang Y., Dong Y., Chen Y., Wegener G., Cheng L., Wang, F. Thermophilic Hadarchaeota grow on long-chain alkanes in syntrophy with methanogens // Nat. Comm. 2024. V. 15. Art. 6560. https://doi.org/10.1038/s41467-024-50883-z
- Zavarzina D. G., Kochetkova T. V., Chistyakova N. I., Gracheva M. A., Antonova A. V., Merkel A.Yu., Perevalova A. A., Chernov M. S., Koksharov Y. A., Bonch-Osmolovskaya E.A., Gavrilov S. N., Bychkov A.Yu. Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium // Sci. Rep. 2020. V. 10. Art. 21661. https://doi.org/10.1038/s41598-020-78605-7
- Zemskaya T. I., Pogodaeva T. V., Shubenkova O. V., Сhernitsina S. M., Dagurova O. P., Buryukhaev S. P., Namsaraev B. B., Khlystov O. M., Egorov A. V., Krylov A. A., Kalmychkov G. V. Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3 // Geo-Mar. Lett. 2010. V. 30. P. 411–425. https://doi.org/10.1007/s00367-010-0199-6
- Zhou Z., Pan J., Wang F., Gu J.-D., Li M. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments // FEMS Microbiol. Rev. 2018. V. 42. P. 639–655. https://doi.org/10.1093/femsre/fuy023
- Zhu T., Dittrich M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review // Front. Bioeng. Biotechnol. 2016. V. 4. Art. 4. https://doi.org/10.3389/fbioe.2016.00004
Supplementary files
