Composition of microbial communities of bottom sediments of the Pechora Sea in the zone of developed oil fields

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim of this study was to determine the taxonomic composition of microbial community in samples from the Pechora Sea bottom sediments and to assess its potential ability to degrade hydrocarbons (HCs) and oil. The criterion for such ability was an increase in the relative abundance of representatives of individual microbial groups in enrichment cultures obtained with various hydrocarbons as the only source of carbon and energy. Using high-throughput sequencing of the V4 fragment of the 16S rRNA gene, the composition of microorganisms in bottom sediment samples and in enrichment cultures obtained in the presence of crude oil, n-nonane, n-octadecane, pristane, cyclohexane, biphenyl, and in control cultures obtained in hydrocarbon-free media was determined. Bacteria of the genera Microbacterium, Janibacter, Nocardioides, Rhodococcus, Demequina, Arthrobacter, Novosphingobium, Erythrobacter, Altererythrobacter, Planococcus, as well as unidentified members of the families Sphingomonadaceae and Flavobacteriaceae, not detected by NGS sequencing of 16S rRNA gene fragments in the corresponding environmental samples and control enrichment cultures, were detected in enrichment cultures with hydrocarbons.

About the authors

V. O. Pyrkin

Lomonosov Moscow State University

Email: vladisluw@yandex.ru
Moscow, 119991, Russia

L. A. Gavirova

Lomonosov Moscow State University

Moscow, 119991, Russia

A. R. Stroeva

Lomonosov Moscow State University

Moscow, 119991, Russia

P. Y. Dgebuadze

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Moscow, 119071, Russia

A. I. Shestakov

Lomonosov Moscow State University

Moscow, 119991, Russia

A. A. Klyukina

Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology”

Moscow, 119071, Russia

A. Y. Merkel

Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology”

Moscow, 119071, Russia

E. A. Bonch-Osmolovskaya

Lomonosov Moscow State University

Moscow, 119991, Russia

References

  1. Лейн А. Ю., Саввичев А. С. Биогеохимические процессы в Баренцевом море // Система Баренцева моря / Под ред. А.П. Лисицына. М.: ГЕОС, 2021. С. 287‒306. https://doi.org/10.29006/978-5-6045110-0-8/(23)
  2. Марченко Н. А. Изучение особенностей дрейфа льда в Баренцевом море // Вести газовой науки. 2018. № 4 (36). C. 166‒179.
  3. Могилевский Г. А., Стадник Е. В., Телегина З. П., Богданова В. М., Тон М. С., Смирнова З. С. Способ выявления бактериальных аномалий при поисках нефти и газа. АС № 710012 A1 СССР. МПК G01V 9/00. 1980. № 2309036.
  4. Aalto N. J., Schweitzer H. D., Krsmanovic S., Campbell K., Bernstei H. C. Diversity and selection of surface marine microbiomes in the Atlantic-influenced Arctic // Front. Microbiol. 2022. V. 13. Art. 892634. https://doi.org/10.3389/fmicb.2022.892634
  5. Bardan S. I. Size structure and morphological composition of the Pechora Sea winter bacterioplankton and conditions of its formation // Microbiology (Moscow). 2014. V. 82. P. 751‒761. https://doi.org/10.1134/S0026261713060039
  6. Begmatov S., Savvichev A. S., Kadnikov V. V., Beletsky A. V., Rusanov I. I., Klyuvitkin A. A., Ravin N. V. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the Barents Sea // Microorganisms. 2021. V. 9. Art. 2362. https://doi.org/10.3390/microorganisms9112362
  7. Cai Y., Wang R., Rao P., Wu B., Yan L., Hu L., Park S., Ryu M., Zhou X. Bioremediation of petroleum hydrocarbons using Acinetobacter sp. SCYY-5 isolated from contaminated oil sludge: strategy and effectiveness study // Int. J. Environ. Res. Public Health. 2021. V. 18. Art. 819. https://doi.org/10.3390/ijerph18020819
  8. Callahan B. J., McMurdie P.J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. DADA2: High-resolution sample inference from Illumina amplicon data // Nat. Methods. 2016. V. 13. P. 581‒583. https://doi.org/10.1038/nmeth.3869
  9. Caruso V., Song X., Asquith M., Karstens L. Performance of microbiome sequence inference methods in environments with varying biomass // mSystems. 2019. V. 4. Art. e00163-18. https://doi.org/10.1128/mSystems.00163-18
  10. Chong J., Liu P., Zhou, G., Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data // Nat. Protoc. 2020. V. 15. P. 799‒821. https://doi.org/10.1093/nar/gkad407
  11. Cordone A., D’Errico G., Magliulo M., Bolinesi F., Selci M., Basili M., Mangoni O. Bacterioplankton diversity and distribution in relation to phytoplankton community structure in the Ross Sea surface waters // Front. Microbiol. 2022. V. 13. Art. 722900. https://doi.org/10.3389/fmicb.2022.722900
  12. de Carvalho C. C., Marques M. P., Hachicho N., Heipieper H. J. Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids // Appl. Microbiol. Biotechnol. 2014. V. 98. P. 5599‒5606. https://doi.org/10.1007/s00253-014-5549-2
  13. Dong C., Bai X., Sheng H., Jiao L., Zhou H., Shao Z. Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean // Biogeosci. 2015. V. 12. P. 2163‒2177. https://doi.org/10.5194/bg-12-2163-2015
  14. Du Z. J., Wang Z. J., Zhao J. X., Chen G. J. Woeseia oceani gen. nov., sp. nov., a chemoheterotrophic member of the order Chromatiales, and proposal of Woeseiaceae fam. nov. // Int. J. Syst. Evol. Microbiol. 2016. V. 66. P. 107‒112. https://doi.org/10.1099/ijsem.0.000683
  15. Duran R., Cuny P., Bonin P., Cravo-Laureau C. Microbial ecology of hydrocarbon-polluted coastal sediments // Environ. Sci. Pollut. Res. Int. 2015. V. 22. P. 15195‒15199. https://doi.org/10.1007/s11356-015-5373-y
  16. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments // Int. J. Syst. Evol. Microbiol. 1995. V. 45. P. 116‒123. https://doi.org/10.1099/00207713-45-1-116
  17. Egorov A. S., Prischepa O. M., Nefedov Y. V., Kontorovich V. A., Vinokurov I. Y. Deep structure, tectonics and petroleum potential of the Western sector of the Russian Arctic // J. Mar. Sci. Eng. 2021. V. 9. Art. 258. https://doi.org/10.3390/jmse9030258
  18. Gohl D. M., Vangay P., Garbe J., MacLean A., Hauge A., Becker A., Beckman K. B. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies // Nat. Biotechnol. 2016. V. 34. P. 942‒949. https://doi.org/10.1038/nbt.3601
  19. Gutierrez T., Singleton D. R., Aitken M. D., Semple K. T. Stable isotope probing of an algal bloom to identify uncultivated members of the Rhodobacteraceae associated with low-molecular-weight polycyclic aromatic hydrocarbon degradation // Appl. Environ. Microbiol. 2011. V. 77. P. 7856‒7860. https://doi.org/10.1128/AEM.06200-11
  20. Hazen T. C., Dubinsky E. A., DeSantis T.Z., Andersen G. L., Piceno Y. M., Singh N. Deep-sea oil plume enriches indigenous oil-degrading bacteria // Science. 2010. V. 330. P. 204–208. https://doi.org/10.1126/science.1195979
  21. Hugerth L. W., Wefer H. A., Lundin S., Jakobsson H. E., Lindberg M., Rodin S., Andersson A. F. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies // Appl. Environ. Microbiol. 2014. V. 80. P. 5116‒5123. https://doi.org/10.1128/AEM.01403-14
  22. King G. M., Kostka J. E., Hazen T. C., Sobecky P. A. Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea // Ann. Rev. Mar. Sci. 2015. V. 7. P. 377‒401. https://doi.org/10.1146/annurev-marine-010814-015543
  23. Lea-Smith D.J., Biller S. J., Davey M. P., Cotton C. A., Perez Sepulveda B. M., Turchyn A. V., Howe C. J. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. 13591‒13596. https://doi.org/10.1073/pnas.1507274112
  24. López-Pérez M., Haro-Moreno J.M., Iranzo J., Rodriguez-Valera F. Genomes of the “Candidatus Actinomarinales” order: highly streamlined marine epipelagic Actinobacteria // mSystems. 2020. V. 5. Art. e01041-20. https://doi.org/10.1128/mSystems.01041-20
  25. Mason O. U., Scott N. M., Gonzalez A., Robbins-Pianka A., Bælum J., Kimbrel J., Jansson J. K. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill // ISME J. 2014. V. 8. P. 1464‒1475. https://doi.org/10.1038/ismej.2013.254
  26. Merkel A. Y., Tarnovetskii I. Y., Podosokorskaya O. A., Toshchakov S. V. Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities // Microbiology (Moscow). 2019. V. 88. P. 671‒680. https://doi.org/10.1134/S0026261719060110
  27. Misson B., Garnier C., Lauga, B., Dang D. H., Ghiglione J. F., Mullot J. U., Pringault O. Chemical multi-contamination drives benthic prokaryotic diversity in the anthropized Toulon Bay // Sci. Total Environ. 2016. V. 556. P. 319‒329. https://doi.org/10.1016/j.scitotenv.2016.02.038
  28. Nguyen T. T., Landfald B. Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor // Front. Microbiol. 2015. V. 6. Art. 17. https://doi.org/10.3389/fmicb.2015.00017
  29. Powell T. G. Pristane/phytane ratio as environmental indicator // Nature. 1988. V. 333. P. 604‒604. https://doi.org/10.1038/333604a0
  30. Probandt D., Knittel K., Tegetmeyer H. E., Ahmerkamp S., Holtappels M., Amann R. Permeability shapes bacterial communities in sublittoral surface sediments // Environ. Microbiol. 2017. V. 19. P. 1584‒1599. https://doi.org/10.1111/1462-2920.13676
  31. Pyrkin V. O., Gavirova L. A., Stroeva A. R., Merkel A. Y., Vidishcheva O. N., Kalmykov A. G., Bonch-Osmolovskaya E.A. Hydrocarbon-oxidizing bacteria of the bottom ecotopes of the Barents and Pechora Seas // Microbiology (Moscow). 2024. V. 93. P. 344–348. https://doi.org/10.1134/S0026261723604839
  32. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Glöckner F. O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucl. Acids Res. 2012. V. 41 (D1). P. 590‒596. https://doi.org/10.1093/nar/gks1219
  33. Rogozhin V., Osadchiev A., Konovalova O. Structure and variability of the Pechora plume in the southeastern part of the Barents Sea // Front. Mar. Sci. 2023. V. 10. Art. 1052044. https://doi.org/10.3389/fmars.2023.1052044
  34. Rojo F. Enzymes for aerobic degradation of alkanes // Handbook of hydrocarbon and lipid microbiology. 2010. V. 2. P. 781‒797. https://doi.org/10.1007/978-3-319-50418-6_6
  35. Sinha R. K., Krishnan K. P., Hatha A. A., Rahiman M., Thresyamma D. D., Kerkar S. Diversity of retrievable heterotrophic bacteria in Kongsfjorden, an Arctic fjord // Braz. J. Microbiol. 2017. V. 48. P. 51‒61. https://doi.org/10.1016/j.bjm.2016.09.011
  36. Stroeva A. R., Klyukina A. A., Vidishcheva O. N., Poludetkina E. N., Solovyeva M. A., Pyrkin V. O., Gavirova L. A., Birkeland N.-K., Akhmanov G.G, Bonch-Osmolovskaya E.A. Structure of benthic microbial communities in the northeastern part of the Barents Sea // Microorganisms. 2024. V. 12. Art. 387. https://doi.org/10.3390/microorganisms12020387
  37. Teeling H., Fuchs B. M., Becher D., Klockow C., Gardebrecht A., Bennke C. M., Amann R. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom // Science. 2012. V. 336. P. 608‒611. https://doi.org/10.1126/science.1218344
  38. Thiele S., Vader A., Thomson S., Saubrekka K., Petelenz E., Armo H. R., Øvreås L. The summer bacterial and archaeal community composition of the northern Barents Sea // Progr. Oceanogr. 2023. V. 215. Art. 103054. https://doi.org/10.1016/j.pocean.2023.103054
  39. Viñas M., Sabaté J., Espuny M. J., Solanas A. M. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil // Appl. Environ. Microbiol. 2005. V. 71. P. 7008‒7018. https://doi.org/10.1128/AEM.71.11.7008-7018.2005
  40. Yamazoe A., Yagi O., Oyaizu H. Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1 // Appl. Microbiol. Biotechnol. 2004. V. 65. P. 211‒218. https://doi.org/10.1007/s00253-003-1541-y
  41. Yang S., Yu M., Chen J. Draft genome analysis of Dietzia sp. 111N12-1, isolated from the South China Sea with bioremediation activity // Braz. J. Microbiol. 2017. V. 48. P. 393‒394. https://doi.org/10.1016/j.bjm.2016.10.029

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences