Degradation of the Biofilms of Gram-Positive and Gram-Negative Bacteria by the PAPC Serine protease from Aspergillus ochraceus
- Autores: Baidamshina D.R.1, Rafia Nasr A.1, Komarevtsev S.K.2, Osmolovskii A.A.3, Miroshnikov K.A.2,3, Kayumov A.R.1, Trizna E.Y.1
- 
							Afiliações: 
							- Kazan (Volga Region) Federal University
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Moscow State Uniuversity
 
- Edição: Volume 93, Nº 2 (2024)
- Páginas: 228-233
- Seção: SHORT COMMUNICATIONS
- URL: https://cardiosomatics.ru/0026-3656/article/view/655141
- DOI: https://doi.org/10.31857/S0026365624020247
- ID: 655141
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Infections associated with biofilm formation by gram-positive and gram-negative microorganisms cause difficulty in therapy and are prone to transition into chronic forms. Approaches to degradation of the biofilm matrix are therefore in demand. In the present work, recombinant recombinant PAPC serine protease from Aspergillus ochraceus caused the degradation of mature biofilms formed by a number of gram-positive and gram-negative bacteria by 15‒20% at 50 µg/mL. At 100 µg/mL, the biomass of S. aureus and P. aeruginosa biofilms decreased by 50%. Thus, the PAPC may be a promising agent for biofilm removal and enhance the efficiency of antimicrobial therapy.
Texto integral
 
												
	                        Sobre autores
D. Baidamshina
Kazan (Volga Region) Federal University
							Autor responsável pela correspondência
							Email: dianabaidamshina@yandex.ru
				                					                																			                												                	Rússia, 							Kazan, 420008						
A. Rafia Nasr
Kazan (Volga Region) Federal University
														Email: dianabaidamshina@yandex.ru
				                					                																			                												                	Rússia, 							Kazan, 420008						
S. Komarevtsev
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
														Email: dianabaidamshina@yandex.ru
				                					                																			                												                	Rússia, 							Moscow, 117997						
A. Osmolovskii
Moscow State Uniuversity
														Email: dianabaidamshina@yandex.ru
				                					                																			                								
Biological Faculty
Rússia, Moscow, 1179974; Moscow, 119234K. Miroshnikov
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Moscow State Uniuversity
														Email: dianabaidamshina@yandex.ru
				                					                																			                								
Biological Faculty
Rússia, Moscow, 119234A. Kayumov
Kazan (Volga Region) Federal University
														Email: dianabaidamshina@yandex.ru
				                					                																			                												                	Rússia, 							Kazan, 420008						
E. Trizna
Kazan (Volga Region) Federal University
														Email: dianabaidamshina@yandex.ru
				                					                																			                												                	Rússia, 							Kazan, 420008						
Bibliografia
- Algburi A., Comito N., Kashtanov D., Dicks L.M., Chikindas M.L. Control of biofilm formation: antibiotics and beyond // Appl. Environ. Microbiol. 2017. V. 83. Art. e02508-16.
- Baidamshina D.R., Trizna E.Y., Holyavka M.G., Bogachev M.I., Artyukhov V.G., Akhatova F.S., Rozhina E.V., Fakhrullin R.F., Kayumov A.R. Targeting microbial biofilms using Ficin, a nonspecific plant protease // Sci. Rep. 2017. V. 7. Art. 46068.
- Greer H.M., Overton K., Ferguson M.A., Spain E.M., Darling L.E., Núñez M.E., Volle C.B. Extracellular polymeric substance protects some cells in an Escherichia coli biofilm from the biomechanical consequences of treatment with magainin 2 // Microorganisms. 2021. V. 9. Art. 976.
- Kaplan J.B. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses // J. Dental Res. 2010. V. 89. P. 205‒218.
- Kaplan J.B., Mlynek K.D., Hettiarachchi H., Alamneh Y.A., Biggemann L., Zurawski D.V., Black C.C., Bane C.E., Kim R.K., Granick M.S. Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo // PLoS One. 2018. V. 13. Art. e0205526.
- Khan J., Tarar S.M., Gul I., Nawaz U., Arshad M. Challenges of antibiotic resistance biofilms and potential combating strategies: a review // 3 Biotech. 2021. V. 11. Art. 169.
- https://doi.org/10.1007/s13205-021-02707-w
- Khoramian B., Emaneini M., Bolourchi M., Niasari-Naslaji A., Gorganzadeh A., Abani S., Hovareshti P. Therapeutic effects of a combined antibiotic-enzyme treatment on subclinical mastitis in lactating dairy cows // Vet. Med. (Praha). 2016. V. 61. P. 237–242.
- Komarevtsev S.K., Evseev P.V., Shneider M.M., Popova E.A., Tupikin A.E., Stepanenko V.N., Kabilov M.R., Shabunin S.V., Osmolovskiy A.A., Miroshnikov K.A. Gene analysis, cloning, and heterologous expression of protease from a micromycete Aspergillus ochraceus capable of activating protein C of blood plasma // Microorganisms. 2021. V. 9. Art. 1936.
- Lahiri D., Nag M., Banerjee R., Mukherjee D., Garai S., Sarkar T., Dey A., Sheikh H.I., Pathak S.K., Edinur H.A., Pati S., Ray R.R. Amylases: biofilm inducer or biofilm inhibitor? // Front. Cell. Infect. Microbiol. 2021. V. 11. Art. 660048.
- Melchior M.B., Vaarkamp H., Fink-Gremmels J. Biofilms: a role in recurrent mastitis infections? // Veterinary J. 2006. V. 171. P. 398‒407.
- O’Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis // Mol. Microbiol. 1998. V. 28. P. 449‒461.
- Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: a laboratory manual // Cold Spring Harbor Laboratory Press. 1989. V. 49. № 2. P. 411.
- Sauer K., Stoodley P., Goeres D.M., Hall-Stoodley L., Burmolle M., Stewart P.S., Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation // Nature Revs. Microbiol. 2022. V. 20. P. 608–620.
- Schwartz S.H. An overview of the Schwartz theory of basic values // Online readings in Psychology and Culture. 2012. V. 2. № 1. Art. 11.
- Taglialegna A., Lasa I., Valle J. Amyloid structures as biofilm matrix scaffolds // J. Bacteriol. 2016. V. 198. P. 2579‒2588.
- Usmani Y., Ahmed A., Faizi S., Versiani M.A., Shamshad S., Khan S., Simjee S.U. Antimicrobial and biofilm inhibiting potential of an amide derivative [N-(2’, 4’-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide] of ursolic acid by modulating membrane potential and quorum sensing against colistin resistant Acinetobacter baumannii // Microb. Pathog. 2021. V. 157. Art. 104997.
- Vuotto C., Donelli G. Novel treatment strategies for biofilm-based infections // Drugs. 2019. V. 79. P. 1635–1655.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


