Никельфосфидный катализатор на основе мезопористого наносферического полимера в процессе гидрирования гваякола и фурфурола
- Авторы: Шакиров И.И.1, Бороноев М.П.1, Ролдугина Е.А.1, Кардашева Ю.С.1, Кардашев С.В.1
- 
							Учреждения: 
							- Московский государственный университет имени М. В. Ломоносова
 
- Выпуск: Том 65, № 2 (2025)
- Страницы: 161-170
- Раздел: Статьи
- URL: https://cardiosomatics.ru/0028-2421/article/view/686760
- DOI: https://doi.org/10.31857/S0028242125020093
- EDN: https://elibrary.ru/KMLBKH
- ID: 686760
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Получен нанесенный никельфосфидный катализатор in situ в условиях синтеза мезопористого резорцинформальдегидного полимера. Катализатор испытан в гидрировании гваякола и фурфурола в толуоле при давлении водорода 4 МПа. Исследованы характеристики гидрирования фурфурола в зависимости от давления водорода, массы загруженного катализатора, температуры и продолжительности процесса. Оценена активность полученного никельфосфидного катализатора в гидрировании смеси гваякола и фурфурола в толуоле.
Ключевые слова
Полный текст
 
												
	                        Об авторах
Искандер Ильгизович Шакиров
Московский государственный университет имени М. В. Ломоносова
							Автор, ответственный за переписку.
							Email: sammy-power96@yandex.ru
				                	ORCID iD: 0000-0003-2029-693X
				                																			                								
химический факультет
Россия, Москва, 119991Максим Павлович Бороноев
Московский государственный университет имени М. В. Ломоносова
														Email: sammy-power96@yandex.ru
				                	ORCID iD: 0000-0001-6129-598X
				                																			                								
химический факультет; к. х. н.
Россия, Москва, 119991Екатерина Алексеевна Ролдугина
Московский государственный университет имени М. В. Ломоносова
														Email: sammy-power96@yandex.ru
				                	ORCID iD: 0000-0002-9194-1097
				                																			                								
химический факультет; к. х. н.
Россия, Москва, 119991Юлия Сергеевна Кардашева
Московский государственный университет имени М. В. Ломоносова
														Email: sammy-power96@yandex.ru
				                	ORCID iD: 0000-0002-6580-1082
				                																			                								
химический факультет; к. х. н.
Россия, Москва, 119991Сергей Викторович Кардашев
Московский государственный университет имени М. В. Ломоносова
														Email: sammy-power96@yandex.ru
				                	ORCID iD: 0000-0003-1818-7697
				                																			                								
химический факультет; к. х. н.
Россия, Москва, 119991Список литературы
- Lu Q., Li W.-Z., Zhu X.-F. Overview of fuel properties of biomass fast pyrolysis oils // Energy Convers. Manage. 2009. V. 50, № 5. P. 1376–1383. https://doi.org/10.1016/j.enconman.2009.01.001
- Jin W., Pastor-Pérez L., Shen D., Sepúlveda-Escribano A., Gu S., Ramirez Reina T. Catalytic upgrading of biomass model compounds: novel approaches and lessons learnt from traditional hydrodeoxygenation — a review // ChemCatChem. 2019. V. 11, № 3. P. 924–960. https://doi.org/10.1002/cctc.201801722
- Ouedraogo A.S., Bhoi P.R. Recent progress of metals supported catalysts for hydrodeoxygenation of biomass derived pyrolysis oil // J. Clean. Prod. 2020. V. 253. ID119957. https://doi.org/10.1016/j.jclepro.2020.119957
- Qu L., Jiang X., Zhang Z., Zhang X.-G., Song G.-Y., Wang H.-L., Yuan Y.-P., Chang Y.-L. A review of hydrodeoxygenation of bio-oil: model compounds, catalysts, and equipment // Green Chem. 2021. V. 23, № 23. P. 9348–9376. https://doi.org/10.1039/D1GC03183J
- Gollakota A.R.K., Shu C.-M., Sarangi P.K., Shadangi K.P., Rakshit S., Kennedy J.F., Gupta V.K., Sharma M. Catalytic hydrodeoxygenation of bio-oil and model compounds — choice of catalysts, and mechanisms // Renew. Sustain. Energy Rev. 2023. V. 187. ID113700. https://doi.org/10.1016/j.rser.2023.113700
- Kim S., Kwon E.E., Kim Y.T., Jung S., Kim H.J., Huber G.W., Lee J. Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts // Green Chem. 2019. V. 21, № 14. P. 3715–3743. https://doi.org/10.1039/C9GC01210A
- Yao G., Wu G., Dai W., Guan N., Li L. Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions // Fuel. 2015. V. 150. P. 175–183. https://doi.org/10.1016/j.fuel.2015.02.035
- Golubeva M.A., Maximov A.L. Transition metal compounds in the hydrodeoxygenation of biomass derivatives // Renew. Sustain. Energy Rev. 2025. V. 210. ID115153. https://doi.org/10.1016/j.rser.2024.115153
- Бороноев М.П., Шакиров И.И., Ролдугина Е.А., Кардашева Ю.С., Кардашев С.В., Максимов А.Л., Караханов Э.А. Гидрирование гваякола на наноразмерных рутениевых нанесенных катализаторах: влияние размера частиц носителя и присутствия оксигенатов бионефти// Журн. прикл. химии. 2022. Т. 95, № 10. С. 1263–1272. http://doi.org/10.31857/S004446182210005X [Boronoev M.P., Shakirov I.I., Roldugina E.A., Kardasheva Y.S., Kardashev S.V., Maksimov A.L., Karakhanov E.A. Hydrogenation of guaiacol on nanoscale supported ruthenium catalysts: influence of support particle size and the presence of bio-oil oxygenates // Russ. J. Appl. Chem. 2022. V. 95, № 10. P. 1555–1563. https://doi.org/10.1134/S1070427222100068]
- Liang C., Li Z., Dai S. Mesoporous carbon materials: synthesis and modification // Angew. Chem. Int. Ed. 2008. V. 47, № 20. P. 3696–3717. https://doi.org/10.1002/anie.200702046
- Wei J., Liang Y., Zhang X., Simon G.P., Zhao D., Zhang J., Jiang S., Wang H. Controllable synthesis of mesoporous carbon nanospheres and Fe–N/carbon nanospheres as efficient oxygen reduction electrocatalysts // Nanoscale. 2015. V. 7, № 14. P. 6247–6254. https://doi.org/10.1039/C5NR00331H
- Peroni M., Lee I., Huang X., Baráth E., Gutiérrez O.Y., Lercher J.A. Deoxygenation of palmitic acid on unsupported transition-metal phosphides // ACS Catal. 2017. V. 7, № 9. P. 6331–6341. https://doi.org/10.1021/acscatal.7b01294
- Golubeva M.A., Maximov A.L. Hydroprocessing of furfural over in situ generated nickel phosphide based catalysts in different solvents // Appl. Catal. A: Gen. 2020. V. 608. ID117890. https://doi.org/10.1016/j.apcata.2020.117890
- Wu S.-K., Lai P.-C., Lin Y.-C. Atmospheric hydrodeoxygenation of guaiacol over nickel phosphide catalysts: effect of phosphorus composition // Catal. Lett. 2014. V. 144, № 5. P. 878–889. https://doi.org/10.1007/s10562-014-1231-7
- Cecilia J.A., Infantes-Molina A., Rodríguez-Castellón E., Jiménez-López A. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene // J. Catal. 2009. V. 263, № 1. P. 4–15. https://doi.org/10.1016/j.jcat.2009.02.013
- Bui P., Cecilia J.A., Oyama S.T., Takagaki A., Infantes-Molina A., Zhao H., Li D., Rodríguez-Castellón E., Jiménez López A. Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound // J. Catal. 2012. V. 294. P. 184–198. https://doi.org/10.1016/j.jcat.2012.07.021
- Wang R., Smith K.J. The effect of preparation conditions on the properties of high-surface area Ni2P catalysts // Appl. Catal. A: Gen. 2010. V. 380, № 1‒2. P. 149–164. https://doi.org/10.1016/j.apcata.2010.03.055
- Dai X., Song H., Yan Z., Li F., Chen Y., Wang X., Yuan D., Zhang J., Wang Y. Effect of preparation temperature on the structures and hydrodeoxygenation performance of /C catalysts prepared by decomposition of hypophosphites // New J. Chem. 2018. V. 42, № 24. P. 19917–19923. https://doi.org/10.1039/C8NJ04628J
- d’Aquino A. I., Danforth S.J., Clinkingbeard T.R., Ilic B., Pullan L., Reynolds M.A., Murray B.D., Bussell M.E. Highly-active nickel phosphide hydrotreating catalysts prepared in situ using nickel hypophosphite precursors // J. Catal. 2016. V. 335. P. 204–214. https://doi.org/10.1016/j.jcat.2015.12.006
- Li Y., Fu J., Chen B. Highly selective hydrodeoxygenation of anisole, phenol and guaiacol to benzene over nickel phosphide // RSC Adv. 2017. V. 7, № 25. P. 15272–15277. https://doi.org/10.1039/C7RA00989E
- Gonçalves V.O.O., de Souza P.M., Cabioc’h T., da Silva V.T., Noronha F.B., Richard F. Hydrodeoxygenation of m-cresol over nickel and nickel phosphide based catalysts. Influence of the nature of the active phase and the support // Appl. Catal. B: Environ. 2017. V. 219. P. 619–628. https://doi.org/10.1016/j.apcatb.2017.07.042
- Шакиров И.И., Бороноев М.П., Кардашев С.В., Путилин Ф.Н., Караханов Э.А. Селективное гидрирование фенола с использованием нанесенного на мезопористый наносферический полимер Ni2P-катализатора // Наногетерогенный катализ. 2021. Т. 6, № 2. С. 92–99. https://doi.org/10.56304/S2414215821020076 [Shakirov I.I., Boronoev M.P., Kardashev S.V., Putilin F.N., Karakhanov E.A. Selective hydrogenation of phenol using a Ni2P catalyst supported on mesoporous polymeric nanospheres // Petrol. Chem. 2021. V. 61, № 10. P. 1111–1117. https://doi.org/10.1134/S0965544121100042]
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 









