Time Resolution and Light Yield of Scintillation Detector Samples for the Time-of-Flight Neutron Detector of the BM@N Experiment
- Authors: Guber F.F.1, Ivashkin A.P.2, Karpushkin N.M.1, Makhnev A.I.1, Morozov S.V.1, Serebryakov D.V.1
- 
							Affiliations: 
							- Institute for Nuclear Research, Russian Academy of Sciences
- Institute for Nuclear Research of Russian Academy of Sciences
 
- Issue: No 4 (2023)
- Pages: 36-41
- Section: ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА
- URL: https://cardiosomatics.ru/0032-8162/article/view/670459
- DOI: https://doi.org/10.31857/S0032816223030060
- EDN: https://elibrary.ru/IRMZMA
- ID: 670459
Cite item
Abstract
A new compact time-of-flight neutron detector is being planned for the identification and energy measurement of neutrons produced in nucleus-nucleus interactions at energies up to 4 AGeV at the BM@N experiment, located at the Nuclotron (Joint Institute for Nuclear Research, Dubna, Russia). This detector will be used to measure neutron yields and azimuthal flows, which should be sensitive to the equation of state of dense nuclear matter, as shown in various theoretical models It is proposed to use plastic scintillators produced at JINR and IFTP and silicon photomultipliers with a sensitive area of 6 × 6 mm2 for photon registration, one for each scintillation cell. To achieve the required neutron energy resolution (of the order of several percent) in the energy range up to 4 GeV, the time resolution of scintillation detectors should be 100−150 ps. The concept of a time-of-flight neutron detector is discussed. The results of measurements of the light yield and time resolution of several scintillation detector specimens of various sizes and two types of silicon photomultipliers are presented.
About the authors
F. F. Guber
Institute for Nuclear Research, Russian Academy of Sciences
														Email: karpushkin@inr.ru
				                					                																			                												                								108840, Troitsk, Moscow, Russia						
A. P. Ivashkin
Institute for Nuclear Research of Russian Academy of Sciences
														Email: vsinev@inr.ru
				                					                																			                												                								Moscow, Russia						
N. M. Karpushkin
Institute for Nuclear Research, Russian Academy of Sciences
														Email: karpushkin@inr.ru
				                					                																			                												                								108840, Troitsk, Moscow, Russia						
A. I. Makhnev
Institute for Nuclear Research, Russian Academy of Sciences
														Email: karpushkin@inr.ru
				                					                																			                												                								108840, Troitsk, Moscow, Russia						
S. V. Morozov
Institute for Nuclear Research, Russian Academy of Sciences
														Email: karpushkin@inr.ru
				                					                																			                												                								108840, Troitsk, Moscow, Russia						
D. V. Serebryakov
Institute for Nuclear Research, Russian Academy of Sciences
							Author for correspondence.
							Email: instr@pleiadesonline.com
				                					                																			                												                								108840, Moscow, Russia						
References
- Kapishin M. // JPS Conf. Proc. 2020. V. 32. P. 010093. https://doi.org/10.7566/JPSCP.32.010093
- Arsene I., Bravina L., Cassing W., Ivanov Yu., Larionov A., Randrup J., Russkikh V., Toneev V., Zeeb G., Zschiesche D. // Phys. Rev. C. 2007. V. 75. P. 034902. https://doi.org/10.1103/PhysRevC.75.034902
- FOPI Collaboration. Leifels Y. et al. // Phys. Rev. Lett. 1993. V. 71. P. 963. https://doi.org/10.1103/PhysRevLett.71.963
- FOPI Collaboration. Lambrecht D. et al. // Z. Phys. A. 1994. V. 350. P. 115. https://doi.org/10.1007/BF01290679
- Russotto P., Wu P., Zoric M., Chartier M., Leifels Y., Lemmon R., Li Q., Łukasik J., Pagano A., Pawłowski P., Trautmann W. // Phys. Let. B. 2011. V. 697. P. 471. https://doi.org/10.1016/j.physletb.2011.02.033
- LAND collaboration. Blaich T. et al. // Nucl. Instrum. and Methods A. 1992. V. 314. P. 136. https://doi.org/10.1016/0168-9002(92)90507-Z
- R3B collaboration. Boretzky K. et al. // Nucl. Instrum. and Methods A. 2021. V. 1014. P. 165701. https://doi.org/10.1016/j.nima.2021.165701
- Russotto P., Le Fèvre A., Łukasik J., Boretzky K., Cozma M.D., De Filippo E., Gašparić I., Leifels Y., Lihtar I., Pirrone S., Politi G., Trautmann W. // arXiv: 2105.09233 [nucl-ex]. https://doi.org/10.48550/arXiv.2105.09233
- CALICE collaboration. Chadeeva M. et al. // JINST. 2020. V. 15. Iss. 07. C07014. https://doi.org/10.1088/1748-0221/15/07/C07014
- URL https://iftp.ru/
- ALICE Collaboration. Karavicheva T. et al. // J. Phys.: Conf. Ser. 2017. V. 798. P. 012186. https://doi.org/10.1088/1742-6596/798/1/012186
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					


