Contour Method of Tomographic Scanning with Identification of Defects Using Computer Vision
- Autores: Ozdiev A.K.1, Syryamkin V.I.1
- 
							Afiliações: 
							- National Research Tomsk State University
 
- Edição: Nº 4 (2023)
- Páginas: 108-115
- Seção: ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА
- URL: https://cardiosomatics.ru/0032-8162/article/view/670488
- DOI: https://doi.org/10.31857/S0032816223030084
- EDN: https://elibrary.ru/ISEWTY
- ID: 670488
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Studying large objects is one of the most common problems of X-ray tomographic scanning, the solution of which requires the use of more powerful radiation sources, complex expensive mechatronics, and large-sized detector devices, which undoubtedly leads to a multiple increase in the cost of the X-ray unit itself. This article presents one of the possible methods for solving this problem, the essence of which is to scan objects along their contour. This approach can greatly reduce the cost of components of the X-ray unit. At the same time, the approach has a significant limitation: the presence of a large number of artifacts that do not allow detecting defects with sufficient reliability. This problem is proposed to be solved using machine learning.
Sobre autores
A. Ozdiev
National Research Tomsk State University
														Email: svi_tsu@mail.ru
				                					                																			                												                								634050, Tomsk, Russia						
V. Syryamkin
National Research Tomsk State University
							Autor responsável pela correspondência
							Email: svi_tsu@mail.ru
				                					                																			                												                								634050, Tomsk, Russia						
Bibliografia
- Hiller J., Maisl M., Reindl L.M. // Measurement Science and Technology. 2012. V. 23. P. 085404. https://doi.org/10.1088/0957-0233/23/8/085404
- Zhao G., Qin S. // Sensors (Switzerland). 2018. V. 18. https://doi.org/10.3390/s18082524
- Sperrin M., Winder J. Scienti c Basis of the Royal College of Radiologists Fellowship. IOP Publishing, 2014. P. 2−50.
- Zwanenburg E., Williams M., Warnett J. // Measurement Science and Technology. V. 33. № 1. https://doi.org/10.1088/1361-6501/ac354a
- De Chiffre L., Carmignato S., Kruth J.-P., Schmitt R., Weckenmann A. // CIRP Annals – Manufacturing Technology. 2014. V. 63. P. 655. https://doi.org/10.1016/j.cirp.2014.05.011
- Cervantes G.A. Technical Fundamentals of Radiology and CT. IOP Publishing, 2016. P. 11−15.
- Herman G.T. Chap. Computerized Tomography. UK, Basingstoke: Macmillan Press Ltd., 2002. P. 192.
- Ozdiev A., Afornu B., Sednev D. // Research in Nondestructive Evaluation. 2019. V. 30. Iss. 3. P. 179. https://doi.org/10.1080/09349847.2018.1498960
- Wenming Guo, Huifan Qu, Lihong Liang // 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Huangshan, China, July 28-30, 2018. IEEE. 2018. doi 20https://doi.org/10.1109/ICNC-FSKD45631.2018
- Ozdiev A. // Key Engineering Materials. 2017. V. 743. P. 445. doi: 10.4028/ href='www.scientific.net/KEM.743.445' target='_blank'>www.scientific.net/KEM.743.445
- Ozdiev A., Kryuchkov Y., Kroning H. // MATEC Web Conf. V International Forum for Young Scientists “Space Engineering”. 2017. V. 102. Article Number 01029. P. 4. https://doi.org/10.1051/matecconf/201710201029
- https://ieeexplore.ieee.org/abstract/document/7984661
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 














