Contour Method of Tomographic Scanning with Identification of Defects Using Computer Vision
- 作者: Ozdiev A.K.1, Syryamkin V.I.1
- 
							隶属关系: 
							- National Research Tomsk State University
 
- 期: 编号 4 (2023)
- 页面: 108-115
- 栏目: ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА
- URL: https://cardiosomatics.ru/0032-8162/article/view/670488
- DOI: https://doi.org/10.31857/S0032816223030084
- EDN: https://elibrary.ru/ISEWTY
- ID: 670488
如何引用文章
详细
Studying large objects is one of the most common problems of X-ray tomographic scanning, the solution of which requires the use of more powerful radiation sources, complex expensive mechatronics, and large-sized detector devices, which undoubtedly leads to a multiple increase in the cost of the X-ray unit itself. This article presents one of the possible methods for solving this problem, the essence of which is to scan objects along their contour. This approach can greatly reduce the cost of components of the X-ray unit. At the same time, the approach has a significant limitation: the presence of a large number of artifacts that do not allow detecting defects with sufficient reliability. This problem is proposed to be solved using machine learning.
作者简介
A. Ozdiev
National Research Tomsk State University
														Email: svi_tsu@mail.ru
				                					                																			                												                								634050, Tomsk, Russia						
V. Syryamkin
National Research Tomsk State University
							编辑信件的主要联系方式.
							Email: svi_tsu@mail.ru
				                					                																			                												                								634050, Tomsk, Russia						
参考
- Hiller J., Maisl M., Reindl L.M. // Measurement Science and Technology. 2012. V. 23. P. 085404. https://doi.org/10.1088/0957-0233/23/8/085404
- Zhao G., Qin S. // Sensors (Switzerland). 2018. V. 18. https://doi.org/10.3390/s18082524
- Sperrin M., Winder J. Scienti c Basis of the Royal College of Radiologists Fellowship. IOP Publishing, 2014. P. 2−50.
- Zwanenburg E., Williams M., Warnett J. // Measurement Science and Technology. V. 33. № 1. https://doi.org/10.1088/1361-6501/ac354a
- De Chiffre L., Carmignato S., Kruth J.-P., Schmitt R., Weckenmann A. // CIRP Annals – Manufacturing Technology. 2014. V. 63. P. 655. https://doi.org/10.1016/j.cirp.2014.05.011
- Cervantes G.A. Technical Fundamentals of Radiology and CT. IOP Publishing, 2016. P. 11−15.
- Herman G.T. Chap. Computerized Tomography. UK, Basingstoke: Macmillan Press Ltd., 2002. P. 192.
- Ozdiev A., Afornu B., Sednev D. // Research in Nondestructive Evaluation. 2019. V. 30. Iss. 3. P. 179. https://doi.org/10.1080/09349847.2018.1498960
- Wenming Guo, Huifan Qu, Lihong Liang // 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Huangshan, China, July 28-30, 2018. IEEE. 2018. doi 20https://doi.org/10.1109/ICNC-FSKD45631.2018
- Ozdiev A. // Key Engineering Materials. 2017. V. 743. P. 445. doi: 10.4028/ href='www.scientific.net/KEM.743.445' target='_blank'>www.scientific.net/KEM.743.445
- Ozdiev A., Kryuchkov Y., Kroning H. // MATEC Web Conf. V International Forum for Young Scientists “Space Engineering”. 2017. V. 102. Article Number 01029. P. 4. https://doi.org/10.1051/matecconf/201710201029
- https://ieeexplore.ieee.org/abstract/document/7984661
补充文件
 
				
			 
						 
						 
					 
						 
						

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					













