Автоматизированная система для детектирования атмосферных газов CO, CO2 и CH4 на основе параметрических генераторов света
- Авторы: Ерушин Е.Ю.1,2,3, Костюкова Н.Ю.1,2,3, Бойко А.А.1,2, Мирошниченко И.Б.1,3
- 
							Учреждения: 
							- Новосибирский государственный технический университет
- Новосибирский государственный университет
- Институт лазерной физики Сибирского отделения Российской академии наук
 
- Выпуск: № 3 (2024)
- Страницы: 67-73
- Раздел: ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА
- URL: https://cardiosomatics.ru/0032-8162/article/view/682616
- DOI: https://doi.org/10.31857/S0032816224030082
- EDN: https://elibrary.ru/OVIKAF
- ID: 682616
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Многокомпонентный газоанализатор имеет широкий спектр применений, таких как наблюдение за окружающей средой, контроль химических реакций и промышленных процессов, обеспечение безопасности, разведка в нефтяной и газовой отраслях, а также применяется в биомедицине. Лазерная оптико-акустическая спектроскопия является наиболее универсальным методом анализа газовых примесей благодаря своей высокой селективности, чувствительности и быстрому отклику. В данной работе представлена автоматизированная система газового анализа, основанная на комбинированных параметрических генераторах света, с диапазоном перестройки длины волны от 2.5 до 10.8 мкм. Полуширина спектральной линии составляет около 5.5 ± 0.5 см–1 в диапазоне от 2.5 до 4.5 мкм и около 2 ± 0.5 см–1 в диапазоне от 4.5 до 10.8 мкм. С помощью программного обеспечения, установленного на управляющем компьютере, контроллер выполняет все необходимые операции, включая откачку, анализ и удаление газовых проб в измерительном комплексе. В работе представлены экспериментально записанные спектры поглощения газовых смесей CO, CO2 и CH4, полученные с использованием дифференциального оптико-акустического детектора.
Полный текст
 
												
	                        Об авторах
Е. Ю. Ерушин
Новосибирский государственный технический университет; Новосибирский государственный университет; Институт лазерной физики Сибирского отделения Российской академии наук
							Автор, ответственный за переписку.
							Email: render2012@yandex.ru
				                					                																			                												                	Россия, 							630073, Новосибирск, просп. Карла Маркса, 20; 630090, Новосибирск, ул. Пирогова, 1; 630090, Новосибирск, просп. Академика Лаврентьева, 15Б						
Н. Ю. Костюкова
Новосибирский государственный технический университет; Новосибирский государственный университет; Институт лазерной физики Сибирского отделения Российской академии наук
														Email: n.duhovnikova@gmail.com
				                					                																			                												                	Россия, 							630073, Новосибирск, просп. Карла Маркса, 20; 630090, Новосибирск, ул. Пирогова, 1; 630090, Новосибирск, просп. Академика Лаврентьева, 15Б						
А. А. Бойко
Новосибирский государственный технический университет; Новосибирский государственный университет
														Email: baa.nsk@gmail.com
				                					                																			                												                	Россия, 							630073, Новосибирск, просп. Карла Маркса, 20; 630090, Новосибирск, ул. Пирогова, 1						
И. Б. Мирошниченко
Новосибирский государственный технический университет; Институт лазерной физики Сибирского отделения Российской академии наук
														Email: baa.nsk@gmail.com
				                					                																			                												                	Россия, 							630073, Новосибирск, просп. Карла Маркса, 20; 630090, Новосибирск, просп. Академика Лаврентьева, 15Б						
Список литературы
- Kreuzern L.B., Kenyonand N.D., Patel C.K. // Science 1972. V. 177. P. 347. https://doi.org/10.1126/science.177.4046.347
- Tongyu Liu // Measument. 2018. № 8. P. 211. https://doi.org/10.1016/j.measurement.2018.03.046
- Pereira J., Porto-Figueira P., Cavaco C., Taunk K., Rapole S., Dhakne R., Nagarajaram H., Câmara J.S. // Metabolites. 2015. V. 5. P. 3. https://doi.org/10.3390/metabo5010003
- Zhou D. K., Smith W. L., Xu Liu, Jun Li, Larar A. M., Mango S. A. // Appl. Opt. 2005. V. 44. P. 3032. https://doi.org/10.1364/AO.44.003032
- Logan J.A., Prather M.J., Wofsy S.C., McElroy M.B. // J. Geophys. Res. Atmos. 1981. V. 86. P. 7210. https://doi.org/10.1029/JC086iC08p07210
- Ren W., Farooq A., Davidson D.F., Hanson R.K. // Appl. Phys. B. 2012. V. 107. P. 849. https://doi.org/10.1007/s00340-012-5046-1
- Meyer P.L., Sigrist M.W. // Rev. Sci. Instrum. 1990. V. 61. P. 1779. https://doi.org/10.1063/1.1141097
- Zanzottera E. // Crit. Rev. Anal. Chem. 1990. V. 21. P. 279. https://doi.org/10.1080/10408349008051632
- Harren F., Mandon J., Cristescu S.M. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd, 2012. https://doi.org/10.1002/9780470027318.a0718.pub3
- Haisch C. // Meas. Sci. Technol. 2011. V. 23. P. 012001. http://iopscience.iop.org/0957-0233/23/1/012001
- Grant W.B. // Appl. Opt. 1986. V. 25 P. 709. https://doi.org/10.1364/AO.25.000709
- Reyes-Reyes A., Hou Z., van Mastrigt E., Horsten R.C., de Jongste J.C., Pijnenburg M.W., Urbach H.P., Bhattacharya N. // Opt. Express. 2014. V. 22. P. 18299. https://doi.org/10.1364/OE.22.018299
- Vedenyapin V., Boyko A., Kolker D., Isaenko L., Lobanov S., Kostyukova N., Yelisseyev A., Zondy J-J., Petrov V. // Laser Phys. Lett. 2016. V. 13. P. 115401. http://dx.doi.org/10.1088/1612-2011/13/11/115401
- Vodopyanov K.L., Maffetone J.P., Zwieback I., Ruderman W. // Appl. Phys. Lett. 1999. V. 75. P. 1204. https://doi.org/10.1063/1.124642
- Sherstov I.V., Vasiliev V.A., Karapuzikov A.I., Zenov K.G. // Infrared Phys. Technol. 2020. V. 105. P. 103170. https://doi.org/10.1016/j.infrared.2019.103170
- Kolker D.B., Boyko A.A., Dukhovnikova N.Yu., Zenov K.G., Sherstov I.V., Starikova M.K., Miroshnichenko I.B., Miroshnichenko M.B., Kashtanov D.A., Kuznetsova I.B., Shtyrov M.Yu., Zachariadis S., Karapuzikov A.I., Karapuzikov A.A., Lokonov V.N. // Instrum. Exp. Techn. 2014. V. 57. P. 50. https://doi.org/10.1134/S0020441214010217
- Kolker D.B., Sherstov I.V., Kostyukova N.Yu., Boyko A.A., Zenov K.G., Pustovalova R.V. // Quantum Electronics. 2017. V. 47. P. 14. http://dx.doi.org/10.1070/QEL16238
- Kostyukova N.Yu., Kolker D.B., Zenov K.G., Boyko A.A., Starikova M.K., Sherstov I.V., Karapuzikov A.A. // Laser Phys. Lett. 2015. V. 12. P. 095401. http://dx.doi.org/10.1088/1612-2011/12/9/095401
- Bednyakova A., Erushin E., Miroshnichenko I., Kostyukova N., Boyko A., Redyuk A. // Infrared Phys. Technol. 2023. V. 133. P. 104821. https://doi.org/10.1016/j.infrared.2023.104821
- Rothman L.S., Gordon I.E., Babikov Y. et al. // J. Quant. Spectrosc. Radiat. Transf. 2013. V. 130. P. 4 https://doi.org/10.1016/j.jqsrt.2013.07.002
- Wallace W.E. // NIST Standard Reference Database Number 69, 2023. https://doi.org/10.18434/T4D303
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 






