A Simple Radiophotonic Device for Instantaneous Frequency Measurement of Multiple Microwave Signals Based on a Symmetrical Unequal Comb Generator
- Autores: Maltsev A.V.1, Morozov O.G.1, Ivanov A.A.1, Sakhabutdinov A.Z.1, Kuznetsov A.A.1, Lustina A.A.1
- 
							Afiliações: 
							- Tupolev Kazan National Research Technical University
 
- Edição: Nº 5 (2023)
- Páginas: 32-39
- Seção: ЭЛЕКТРОНИКА И РАДИОТЕХНИКА
- URL: https://cardiosomatics.ru/0032-8162/article/view/670410
- DOI: https://doi.org/10.31857/S0032816223050129
- EDN: https://elibrary.ru/ZJZYIA
- ID: 670410
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The paper presents the results and analysis of a radiophotonic device for instantaneous frequency measurements of microwave signals, including the situation with simultaneous measurements of multitude instantaneous frequencies. The device’s principle of operation is to combine the “frequency–amplitude” measurement conversion for the determined frequency with carrier suppression and the formation of equidistant channels based on the frequency comb to estimate its magnitude. An efficient method for unequal symmetric optical frequency comb generation based on the phase switching of an optical carrier with its suppression in a phase modulator is proposed. The comb allows for the formation of up to ten channels with a width of 2 GHz that can be adjusted. The amplitudes of the boundary frequencies of the channels are not equal, which makes it possible to differentiate the measured frequencies in relation to the powers of their beats. Separately, the features of the instantaneous frequency measurement in the zero channel of the device are studied. The use of information signals with a suppressed carrier makes it possible to reduce the requirements for the laser frequency stability. The bandwidth of the photodetector is equal to the channel width, thus making it possible to use it as a channel filter. The device is first simulated in the Optiwave System software environment, and the factors affecting the system performance are then studied on a test bench. The design simplicity of the device, built on only two modulators, is noted.
Sobre autores
A. Maltsev
Tupolev Kazan National Research Technical University
														Email: ogmorozov@kai.ru
				                					                																			                												                								420111, Kazan, Russia						
O. Morozov
Tupolev Kazan National Research Technical University
														Email: ogmorozov@kai.ru
				                					                																			                												                								420111, Kazan, Russia						
A. Ivanov
Tupolev Kazan National Research Technical University
														Email: ogmorozov@kai.ru
				                					                																			                												                								420111, Kazan, Russia						
A. Sakhabutdinov
Tupolev Kazan National Research Technical University
														Email: ogmorozov@kai.ru
				                					                																			                												                								420111, Kazan, Russia						
A. Kuznetsov
Tupolev Kazan National Research Technical University
														Email: ogmorozov@kai.ru
				                					                																			                												                								420111, Kazan, Russia						
A. Lustina
Tupolev Kazan National Research Technical University
							Autor responsável pela correspondência
							Email: ogmorozov@kai.ru
				                					                																			                												                								420111, Kazan, Russia						
Bibliografia
- Ivanov A., Morozov O., Sakhabutdinov A., Kuznetsov A., Nureev I. // Photonics. 2022. V. 9. P. 754. https://doi.org/10.3390/photonics9100754
- Shen Z., Jin C., He Q., Zhang Z., Zhao Y. // IEEE Photonics Journal. 2019. V. 11. P. 5501708. https://doi.org/10.1109/JPHOT.2019.2922546
- Морозов О.Г., Нуреев И.И., Сахабутдинов А.Ж., Ива-нов А.А., Папазян С.Г., Василец А.А., Мисбахов Р.Ш. // Фотон-экспресс. 2019. № 5 (157). С. 16.
- Morozov O.G., Aybatov D.L. // Proc. SPIE Optical Technologies for Telecommunications 2009. Russia, Samara, 2009. V. 7523. P. 75230D. https://doi.org/10.1117/12.854957
- Morozov O.G. // Proc. SPIE Optical Technologies for Telecommunications 2011 (OTT 2011). Russia, Kazan, 2011. V. 8410. P. 84100P. https://doi.org/10.1117/12.923115
- Morozov O.G., Il’in G.I., Morozov G.A. // Proc. of Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO). 2017. Russia, Kazan, 2017. P. 1. https://doi.org/10.1109/SINKHROINFO.2017.7997544
- Sahabutdinov A.J., Morozov O.G., Ivanov A.A., Moro-zov G.A., Misbakhov R.S., Feofilaktov S.V. // Proc. of SPIE Optical Technologies in Telecommunications 2017. Russia, Kazan, 2017. V. 10774. P. 107740Y. https://doi.org/10.1117/12.2318741
- Ivanov A.A., Morozov O.G., Andreev V.A., Kuznetsov A.A., Faskhutdinov L.M. // Proc. of XI International Conference on Antenna Theory and Techniques (ICATT). Ukraine, Kyiv, 2017. P. 427. https://doi.org/10.1109/ICATT.2017.7972681
- Ivanov A.A., Morozov O.G., Andreev V.A., Morozov G.A., Kuznetsov A.A., Faskhutdinov L.M. // Proc. of SPIE Optical Technologies for Telecommunications 2016. Russia, Samara, 2016. V. 10342. P. 103421A. https://doi.org/10.1117/12.2270839
- Morozov O.G., Il’in G.I., Morozov G.A., Nureev I.I., Misbakhov R.S. // Proc. of SPIE Optical Technologies for Telecommunications 2015. Russia, Ufa, 2015. V. 9807. P. 980711. https://doi.org/10.1117/12.2231948
- Morozov O.G., Nureev I.I., Morozov G.A., Ivanov A.A., Sakhabutdinov A.Z. // Proc. of Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). Russia, Kaliningrad, 2021. P. 1. https://doi.org/10.1109/SYNCHROINFO51390.2021.9488407
- Sakhabutdinov A.Z., Nureev I.I., Morozov G.A., Ivanov A.A., Tyazhelova A.A. // Proc. of Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). 2021. Russia, Kaliningrad, 2021 P. 1. https://doi.org/10.1109/SYNCHROINFO51390.2021.9488368
- Wei Zhu, Jing Li, Miaoxia Yan, Li Pei, Tigang Ning, Jingjing Zheng, and Jianshuai Wang // Appl. Opt. 2022. V. 61. P. 10499. https://doi.org/10.1364/ao.476452
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 









