Modernized Liquid Helium-Free Closed-Cycle Cryostat for Mössbauer Research
- Autores: Starchikov S.S.1, Funtov K.O.1, Zayakhanov V.A.1, Frolov K.V.1, Klenov M.G.2, Bondarenko I.Y.2, Lyubutin I.S.1
- 
							Afiliações: 
							- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences
- ООО CryoPribor
 
- Edição: Nº 3 (2023)
- Páginas: 130-141
- Seção: ЛАБОРАТОРНАЯ ТЕХНИКА
- URL: https://cardiosomatics.ru/0032-8162/article/view/670530
- DOI: https://doi.org/10.31857/S003281622302026X
- EDN: https://elibrary.ru/GTURMM
- ID: 670530
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
One of the problems in the use of closed-cycle cryostats for applied and basic scientific research is the transmission of mechanical vibrations to the sample. This is particularly relevant for Mössbauer spectroscopy and optical research methods since vibrations lead to broadening of spectral lines. This paper presents various engineering approaches to reducing mechanical vibrations on a sample in closed-cycle cryostats, in particular for Mössbauer spectroscopy. The broadening of the spectral lines of the reference absorber, α-Fe foil, was analyzed and a comparison of the spectra of a FeBO3 single crystal of high structural quality before and after updating the cryostat was made. The obtained results can be used to develop new cryostats or improve existing ones.
Sobre autores
S. Starchikov
Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences
														Email: zayakhanov.vladimir@gmail.com
				                					                																			                												                								119333, Moscow, Russia						
K. Funtov
Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences
														Email: zayakhanov.vladimir@gmail.com
				                					                																			                												                								119333, Moscow, Russia						
V. Zayakhanov
Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences
														Email: zayakhanov.vladimir@gmail.com
				                					                																			                												                								119333, Moscow, Russia						
K. Frolov
Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences
														Email: zayakhanov.vladimir@gmail.com
				                					                																			                												                								Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences						
M. Klenov
ООО CryoPribor
														Email: zayakhanov.vladimir@gmail.com
				                					                																			                												                								123060, Moscow, Russia						
I. Bondarenko
ООО CryoPribor
														Email: zayakhanov.vladimir@gmail.com
				                					                																			                												                								123060, Moscow, Russia						
I. Lyubutin
Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: zayakhanov.vladimir@gmail.com
				                					                																			                												                								119333, Moscow, Russia						
Bibliografia
- Li X., Zhu K., Pang J., Tian M., Liu J., Rykov A.I., Zheng M., Wang X., Zhu X., Huang Y., Liu B., Wang J., Yang W., Zhang T. // Appl. Catal. B Environ. 2018. V. 224. P. 518. https://doi.org/10.1016/j.apcatb.2017.11.004
- Tombácz E., Turcu R., Socoliuc V., Vékás L. // Biochem. Biophys. Res. Commun. 2015. V. 468. № 3. P. 442. https://doi.org/10.1016/j.bbrc.2015.08.030
- Oshtrakh M.I. // Cell Biochem. Biophys. 2019. V. 77. № 1. P. 15. https://doi.org/10.1007/s12013-018-0843-8
- Chuev M.A., Cherepanov V.M., Deyev S.M., Mischenko I.N., Nikitin M.P., Polikarpov M.A., Panchenko V.Y. // AIP Conference Proceedings. 2010. V. 1311. P. 322. https://doi.org/10.1063/1.3530033
- Rusakov V.S., Pokatilov V.S., Sigov A.S., Matsnev M.E., Gubaidulina T.V. // JETP Lett. 2014. V. 100. № 7. P. 463. https://doi.org/10.1134/S0021364014190102
- Kuzmann E., Homonnay Z., Klencsár Z. Szalay R. // Molecules. 2021. V. 26. № 4. P. 1062. https://doi.org/10.3390/molecules26041062
- Maksimova A.A., Klencsár Z., Oshtrakh M.I., Petrova E.V., Grokhovsky V.I., Kuzmann E., Homonnay Z., Semion-kin V.A. // Hyperfine Interact. 2016. V. 237. № 1. P. 33. https://doi.org/10.1007/s10751-016-1218-4
- Sumanov V.D., Aksyonov D.A., Drozhzhin O.A., Presniakov I., Sobolev A.V., Glazkova I., Tsirlin A.A., Rupasov D., Senyshyn A., Kolesnik I.V., Stevenson K.J., Antipov E., Abakumov A.M. // Chem. Mater. 2019. V. 31. № 14. P. 5035. https://doi.org/10.1021/acs.chemmater.9b00627
- Shen G., Mao H.K. // Reports Prog. Phys. 2017. V. 80. № 1. P. 016101. https://doi.org/10.1088/1361-6633/80/1/016101
- Williams J.M. // Cryogenics (Guildf). 1975. V. 15. № 6. P. 307. https://doi.org/10.1016/0011-2275(75)90077-6
- Micke P., Stark J., King S.A., Leopold T., Pfeifer T., Schmöger L., Schwarz M., Spieß L.J., Schmidt P.O., Crespo López-Urrutia J.R. // Rev. Sci. Instrum. 2019. V. 90. № 6. P. 065104. https://doi.org/10.1063/1.5088593
- Ekin J. Experimental techniques for low-temperature measurements: cryostat design, material properties and superconductor critical-current testing. NY.: Oxford U. Press, 2006. ISBN 978-0-19-857054-7. https://doi.org/10.1063/1.2743130
- Gifford W.E. Advances in Cryogenic Engineering. Boston, MA: Springer US, 1966. P. 152–159.
- D’Addabbo A., Bucci C., Canonica L., Di Domizio S., Gorla P., Marini L., Nucciotti A., Nutini I., Rusconi C., Welliver B. // Cryogenics (Guildf). 2018. V. 93. P. 56. https://doi.org/10.1016/j.cryogenics.2018.05.001
- Ikushima Y., Li R., Tomaru T., Sato N., Suzuki T., Haruyama T., Shintomi T., Yamamoto A. // Cryogenics (Guildf). 2008. V. 48. № 9–10. P. 406. https://doi.org/10.1016/j.cryogenics.2008.04.001
- Boolchand P., Lemon G.H., Bresser W.J., Enzweiler R.N., Harris R. // Rev. Sci. Instrum. 1995. V. 66. № 4. P. 3051. https://doi.org/10.1063/1.1145528
- Olivieri E., Billard J., De Jesus M., Juillard A. Leder A. // Nucl. Instrum. and Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2017. V. 858. P. 73. https://doi.org/10.1016/j.nima.2017.03.045
- Наумов П.Г., Любутин И.С., Фролов К.В., Деми-хов Е.И. // ПТЭ. 2010. № 5. С. 158.
- Криомагнитные системы tSTAT310x. URL: http://cryo.ru/index.php?option=com_content&task= view&id=72&lang=ru.
- Courts S.S. // IOP Conf. Ser. Mater. Sci. Eng. 2017. V. 278. № 1. P. 012076. https://doi.org/10.1088/1757-899X/278/1/012076
- Matsnev M.E., Rusakov V.S. // AIP Conference Proceedings. 2012. V. 1489. P. 178. https://doi.org/10.1063/1.4759488
- Yagupov S., Strugatsky M., Seleznyova K., Mogilenec Y., Snegirev N., Marchenkov N V., Kulikov A.G., Eliovich Y.A., Frolov K.V., Ogarkova Y.L., Lyubutin I.S. // Cryst. Growth Des. 2018. V. 18. № 12. P. 7435. https://doi.org/10.1021/acs.cgd.8b01128
- Lyubutin I.S., Snegirev N.I., Chuev M.A., Starchikov S.S., Smirnova E.S., Lyubutina M.V., Yagupov S.V., Strugatsky M.B., Alekseeva O.A. // J. Alloys Compd. 2022. V. 906. P. 164348. https://doi.org/10.1016/j.jallcom.2022.164348
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 









