Optimal motion of a body controlled by an internal mass in the resistive environment
- Authors: Glazkov T.V.1, Chernousko F.L.1
- 
							Affiliations: 
							- Ishlinsky Institute for Problems in Mechanics RAS
 
- Issue: Vol 88, No 1 (2024)
- Pages: 53-66
- Section: Articles
- URL: https://cardiosomatics.ru/0032-8235/article/view/675074
- DOI: https://doi.org/10.31857/S0032823524010046
- EDN: https://elibrary.ru/YUQAMC
- ID: 675074
Cite item
Abstract
Translational movement of a body controlled by means of periodical motions of an internal mass within the environment with the quadratic resistance is considered. The average speed of motion depending on the constraints imposed is evaluated, and the conditions are found that correspond to the maximum average speed.
Full Text
 
												
	                        About the authors
T. V. Glazkov
Ishlinsky Institute for Problems in Mechanics RAS
							Author for correspondence.
							Email: t.glazkov@bk.ru
				                					                																			                												                	Russian Federation, 							Moscow						
F. L. Chernousko
Ishlinsky Institute for Problems in Mechanics RAS
														Email: chern@ipmnet.ru
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Nagaev R.F., Tamm E.A. Vibrational displacement in a medium with quadratic resistance to motion // Mashinoved., 1980, no. 4, pp. 3–8. (in Russian)
- Gerasimov S.A. On vibrational flight of a symmetric system // Izv. vuzov. Mashinostr., 2005, no. 8, pp. 3–7. (in Russian)
- Yegorov A.G., Zakharova O.S. Optimal quasistationary motion of a vibro-robot in a viscous medium // Izv. vuzov. Matematika, 2012, no. 2, pp. 57–64. (in Russian)
- Liu Y., Wiercigroch M., Pavlovskaya E., Yu. Y. Modeling of a vibro-impact capsule system // Int. J. Mech. Sci., 2013, vol. 66, pp. 2–11.
- Liu Y., Pavlovskaya E., Hendry D., Wiercigroch M. Optimization of the vibroimpact capsule system // J. Mech. Engng., 2016, vol. 62, pp. 430–439.
- Fang H.B., Xu J. Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium // J. Sound&Vibr., 2011, vol. 330, pp. 4002–4018.
- Xu J., Fang H. Improving performance: recent progress on vibration-driven locomotion systems // Nonlin. Dyn., 2019, vol. 98, pp. 2651–2669.
- Tahmasian S. Dynamic analysis and optimal control of a drag-based vibratory systems using averaging // Nonlin. Dyn., 2021, vol. 104, pp. 2201–2217.
- Chernousko F.L. The optimal periodic motions of a two-mass system in a resistant medium // JAMM, 2008, vol. 72, iss. 2, pp. 116–125.
- Chernousko F.L., Bolotnik N.N. Dynamics of Mobile Systems with Controlled Configuration. Moscow: Fizmatlit, 2022. 464 p. (in Russian)
- Chernousko F.L. Optimization of motion of a body with an internal mass under quadratic resistance // Dokl. Phys., 2023, vol. 513, pp. 80–86. (in Russian)
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted







