Solutions of Some Wave Mechanics Models
- Autores: Kaptsov O.V.1, Kaptsov D.O.1
- 
							Afiliações: 
							- Institute of Computational Modelling SB RAS
 
- Edição: Volume 87, Nº 2 (2023)
- Páginas: 176-185
- Seção: Articles
- URL: https://cardiosomatics.ru/0032-8235/article/view/675136
- DOI: https://doi.org/10.31857/S003282352302008X
- EDN: https://elibrary.ru/TZNDZR
- ID: 675136
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We consider one-dimensional second order partial differential equations describing waves in inhomogeneous and nonlinear media. Contact transformations and Euler differential substitution are used to construct general solutions. General and partial solutions of some nonstationary continuum mechanics models are found.
Palavras-chave
Sobre autores
O. Kaptsov
Institute of Computational Modelling SB RAS
							Autor responsável pela correspondência
							Email: kaptsov@icm.krasn.ru
				                					                																			                												                								Russia, Krasnoyarsk						
D. Kaptsov
Institute of Computational Modelling SB RAS
							Autor responsável pela correspondência
							Email: hot.dok@gmail.com
				                					                																			                												                								Russia, Krasnoyarsk						
Bibliografia
- Brekhovskikh L.M. Waves in Layered Media. Moscow: Nauka, 1973. (in Russian)
- Kulikovskii A.G., Sveshnikova Elena I. Nonlinear Waves in Elastic Media. Boca Raton. CRC Press, 1995.
- Ovsyannikov L.V. Lectures on Basic Gas Dynamics., Moscow; Izhevsk: Inst. Comput. Sci., 2003. (in Russian)
- Rabotnov Yu.N. Elements of Hereditary Mechanics of Solids. Moscow: Nauka, 1977. (in Russian)
- Ovsyannikov L.V. Group analysis of differential equations. Moscow: Nauka, 1978. (in Russian)
- Ibragimov N. Transformation Groups in Mathematical Physics. Dordrecht: Reidel, 1985.
- Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P. Soliton Theory: Inverse Scattering Method. Moscow: Nauka, 1980.
- Ablowitz M.J., Segur H. Solitons and the Inverse Scattering Transform. Philadelphia: Soc. Industr.&Appl. Math., 1981.
- Sidorov A.F., Shapeev V.P., Yanenko N.N. Method of Differential Relations and Its Applications in Gas Dynamics. Novosibirsk: Nauka, 1984.
- Euler L. Integral Calculus. Vol. 3. Moscow: GIFML, 1958.
- Darboux J.G. Lectures on the General Theory of Surfaces and Geometrical Applications of the Analysis of Infinitesimals. Vol. 2. Izhevsk: Inst. Comput. Sci., 2013.
- Kaptsov O.V. Methods for Integrating Partial Differential Equations. Moscow: Fizmatlit, 2009. (in Russian)
- Cherny G.G. Gas Dynamics. Moscow: Nauka, 1988. (in Russian)
- Novatsky V.K. Wave Problems of the Theory of Plasticity. Moscow, Mir, 1978.
- Medwin H., Clay C. Fundamentals of Acoustical Oceanography. Acad. Press, 1997.
- Ames W.F., Lohner R.J., Adams E. Group properties of // Int. J. Nonlin. Mech., 1981, vol. 16, pp. 439–447.
- Bluman G.W., Kumei S. On invariance properties of the wave equation // J. Math. Phys., 1987, vol. 28, pp. 307–318.
- Bluman G.W., Cheviakov A.F. Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation// J. Math. Anal. Appl., 2007, vol. 333, pp. 93–111.
- Pelinovsky E., Kaptsov O. Traveling waves in shallow seas of variable depths // Symmetry, 2022, vol. 14 (7), pp. 1448.
- Aksenov A.V. Symmetries and relations between solutions of the class Euler–Poisson–Darboux equations // Dokl. Math., 2001, vol. 64, no. 3, pp. 421–424.
- Kamke E. Handbook on First Order Partial Differential Equations. Moscow: Nauka, 1966.
- Galaktionov V., Svirshchevskii S. Exact Solutions and Invariant Subspaces of Nonlinear PDEs in Mechanics and Physics. Chapman&Hall/CRC Appl. Math.&Nonlin. Sci., 2006.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
